
Simscape™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simscape™ User’s Guide

© COPYRIGHT 2007–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2007 Online only New for Version 1.0 (Release 2007a)
September 2007 Online only Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.2 (Release 2009b)
March 2010 Online only Revised for Version 3.3 (Release 2010a)

Contents

Modeling Physical Systems

1
Basic Principles of Modeling Physical Networks 1-2
Overview of the Physical Network Approach to Modeling
Physical Systems . 1-2

Variable Types . 1-4
Building the Mathematical Model . 1-5
Direction of Variables . 1-6
Connector Ports and Connection Lines 1-8
Connecting Simscape Diagrams to Simulink Sources and
Scopes . 1-10

Introducing the Simscape Block Libraries 1-11
Library Structure Overview . 1-11
Using the Simulink Library Browser to Access the Block
Libraries . 1-11

Using the Command Prompt to Access the Block
Libraries . 1-12

Essential Steps to Building a Physical Model 1-14
Building Your Model . 1-14
Using the Conserving Ports . 1-15
Using the Physical Signal Ports . 1-16

Creating a Simple Model . 1-17
Building a Simscape Diagram . 1-17
Modifying Initial Settings . 1-25
Running the Simulation . 1-26
Adjusting the Parameters . 1-29

Modeling Best Practices . 1-35
Grounding Rules . 1-35
Avoiding Numerical Simulation Issues 1-38

Modeling Pneumatic Systems . 1-42

v

Intended Applications . 1-42
Assumptions and Limitations . 1-42
Fundamental Equations . 1-43
Network Variables . 1-44
Connection Constraints . 1-45
References . 1-45

Simulating Physical Models

2
How Simscape Simulation Works 2-2
Simscape Simulation Phases . 2-2
Model Validation . 2-4
Network Construction . 2-4
Equation Construction . 2-5
Computing Initial Conditions . 2-5
Performing Transient Initialization 2-6
Transient Solve . 2-6

Working with Solvers . 2-8
Selecting a Solver . 2-8
Input Filtering . 2-10

Troubleshooting Simulation Errors 2-13
Troubleshooting Tips and Techniques 2-13
System Configuration Errors . 2-14
Numerical Simulation Issues . 2-17
Initial Conditions Solve Failure . 2-19
Transient Simulation Issues . 2-20

Finding an Operating Point . 2-22
What Is an Operating Point? . 2-22
How to Find Operating Points . 2-23
Finding Operating Points with Simscape, Simulink, and
Related Products . 2-24

Linearizing at an Operating Point 2-28
What Is Linearization? . 2-28
How to Linearize a Model . 2-30

vi Contents

Linearizing a Model with Simscape, Simulink, and Related
Products . 2-30

References . 2-34

Generating Code . 2-35
About Code Generation from Simscape Models 2-35
Related Simulink Code Generation Documentation 2-35
Reasons for Generating Code . 2-36
Using Code-Related Products and Features 2-36
How Simscape Code Generation Differs from Simulink . . . 2-37

Limitations . 2-39
Sample Time and Solver Restrictions 2-39
Algebraic Loops . 2-39
Restricted Simulink Tools . 2-40
Unsupported Simulink Tools . 2-42
Simulink Tools Not Compatible with Simscape Blocks . . . 2-42
Code Generation . 2-42

Logging Simulation Data

3
About Simulation Data Logging . 3-2
Suggested Workflows . 3-2
Limitations . 3-2

How to Log Simulation Data . 3-3
How to Enable Data Logging . 3-3
Data Logging Options . 3-4

Data Logging Example . 3-6

vii

Working with Physical Units

4
Overview . 4-2

Unit Definitions . 4-4

Specifying Units in Block Dialogs 4-9

Thermal Unit Conversions . 4-11
About Affine Units . 4-11
When to Apply Affine Conversion . 4-11
How to Apply Affine Conversion . 4-12

Angular Units . 4-14
References . 4-14

Using the Simscape Editing Mode

5
About the Simscape Editing Mode 5-2
Suggested Workflows . 5-2
What You Can Do in Restricted Mode 5-3
What You Can Do in Full Mode . 5-4
Switching Between Modes . 5-4
Working with Block Libraries . 5-7

Working with Restricted and Full Modes 5-9
Setting the Model Loading Preference 5-9
Saving a Model in Restricted Mode 5-10
Working with a Model in Restricted Mode 5-13
Switching from Restricted to Full Mode 5-21

Editing Mode Information . 5-23
What Is the Current Mode? . 5-23
Which Licenses Are Checked Out? . 5-23

viii Contents

Examples

A
Getting Started . A-2

Best Practices . A-2

Editing Mode . A-2

Index

ix

x Contents

1

Modeling Physical Systems

• “Basic Principles of Modeling Physical Networks” on page 1-2

• “Introducing the Simscape Block Libraries” on page 1-11

• “Essential Steps to Building a Physical Model” on page 1-14

• “Creating a Simple Model” on page 1-17

• “Modeling Best Practices” on page 1-35

• “Modeling Pneumatic Systems” on page 1-42

1 Modeling Physical Systems

Basic Principles of Modeling Physical Networks

In this section...

“Overview of the Physical Network Approach to Modeling Physical Systems”
on page 1-2

“Variable Types” on page 1-4

“Building the Mathematical Model” on page 1-5

“Direction of Variables ” on page 1-6

“Connector Ports and Connection Lines” on page 1-8

“Connecting Simscape Diagrams to Simulink Sources and Scopes” on page
1-10

Overview of the Physical Network Approach to
Modeling Physical Systems
Simscape™ software is a set of block libraries and special simulation features
for modeling physical systems in the Simulink® environment. It employs
the Physical Network approach, which differs from the standard Simulink
modeling approach and is particularly suited to simulating systems that
consist of real physical components.

Simulink blocks represent basic mathematical operations. When you
connect Simulink blocks together, the resulting diagram is equivalent to the
mathematical model, or representation, of the system under design. Simscape
technology lets you create a network representation of the system under
design, based on the Physical Network approach. According to this approach,
each system is represented as consisting of functional elements that interact
with each other by exchanging energy through their ports.

These connection ports are bidirectional. They mimic physical connections
between elements. Connecting Simscape blocks together is analogous to
connecting real components, such as pumps, valves, and so on. In other words,
Simscape diagrams mimic the physical system layout. If physical components
can be connected, their models can be connected, too. You do not have to
specify flow directions and information flow when connecting Simscape
blocks, just as you do not have to specify this information when you connect

1-2

Basic Principles of Modeling Physical Networks

real physical components. The Physical Network approach, with its Through
and Across variables and bidirectional physical connections, automatically
resolves all the traditional issues with variables, directionality, and so on.

The number of connection ports for each element is determined by the number
of energy flows it exchanges with other elements in the system, and depends
on the level of idealization. For example, a fixed-displacement hydraulic
pump in its simplest form can be represented as a two-port element, with one
energy flow associated with the inlet (suction) and the other with the outlet.
In this representation, the angular velocity of the driving shaft is assumed
constant, making it possible to neglect the energy exchange between the
pump and the shaft. To account for a variable driving torque, you need a third
port associated with the driving shaft.

An energy flow is characterized by its variables. Each energy flow is
associated with two variables, one Through and one Across (see “Variable
Types” on page 1-4 for more information). Usually, these are the variables
whose product is the energy flow in watts. They are called the basic, or
conjugate, variables. For example, the basic variables for mechanical
translational systems are force and velocity, for mechanical rotational
systems—torque and angular velocity, for hydraulic systems—flow rate and
pressure, for electrical systems—current and voltage.

The following example illustrates a Physical Network representation of a
double-acting hydraulic cylinder.

The element is represented with three energy flows: two flows of hydraulic
energy through the inlet and outlet of the cylinder and a flow of mechanical

1-3

1 Modeling Physical Systems

energy associated with the rod motion. It therefore has the following three
connector ports:

• A — Hydraulic conserving port associated with pressure p1 (an Across
variable) and flow rate q1 (a Through variable)

• B — Hydraulic conserving port associated with pressure p2 (an Across
variable) and flow rate q2 (a Through variable)

• R — Mechanical translational conserving port associated with rod velocity
v3 (an Across variable) and force F3 (a Through variable)

See “Connector Ports and Connection Lines” on page 1-8 for more information
on connector port types.

Variable Types
Physical Network approach supports two types of variables:

• Through — Variables that are measured with a gauge connected in series
to an element.

• Across — Variables that are measured with a gauge connected in parallel
to an element.

The following table lists the Through and Across variables associated with
each type of physical domain in Simscape software:

Physical Domain Across Variable Through Variable

Electrical Voltage Current

Hydraulic Pressure Flow rate

Magnetic Magnetomotive force
(mmf)

Flux

Mechanical rotational Angular velocity Torque

Mechanical
translational

Translational velocity Force

1-4

Basic Principles of Modeling Physical Networks

Physical Domain Across Variable Through Variable

Pneumatic Pressure and
temperature

Mass flow rate and heat
flow

Thermal Temperature Heat flow

Note Generally, the product of each pair of Across and Through variables
associated with a domain is power (energy flow in watts). The exceptions are
pneumatic domain, where the product of pressure and mass flow rate is not
power, and magnetic domain, where the product of mmf and flux is not power,
but energy. These result in a pseudo-bond graph.

Building the Mathematical Model
Through and Across variables associated with all the energy flows form the
basis of the mathematical model of the block.

For example, the model of a double-acting hydraulic cylinder shown in the
previous illustration can be described with a simple set of equations:

F p A p A3 1 1 2 2= −i i

q A v1 1 3= i

q A v2 2 3= i

1-5

1 Modeling Physical Systems

where

q1,q2 Flow rates through ports A and B, respectively (Through variables)

p1,p2 Gauge pressures at ports A and B, respectively (Across variables)

A1,A2 Piston effective areas

F3 Rod force (Through variable)

v3 Rod velocity (Across variable)

The model could be considerably more complex, for example, it could
account for friction, fluid compressibility, inertia of the moving parts, and
so on. For all these different mathematical models, however, the element
configuration (that is, the number and type of ports and the associated
Through and Across variables) would remain the same, meaning that the
Physical Network approach lets you substitute models of different levels of
complexity without introducing any changes to the schematic. For example,
you can start developing your system by using the Resistive Tube block from
the Foundation library, which accounts only for friction losses. At a later
stage in development, you may want to account for fluid compressibility.
You can then replace it with a Hydraulic Pipeline block, available with
SimHydraulics® block libraries, or, depending on your application, even with
a Segmented Pipeline block if you also need to account for fluid inertia. This
modeling principle is called incremental modeling.

Direction of Variables
Each variable is characterized by its magnitude and sign. The sign is the
result of measurement orientation. The same variable can be positive or
negative, depending on the polarity of a measurement gauge. That is why
it is very important to apply exactly the same rule to all the variables in
the Physical Network.

Elements with only two ports are characterized with one pair of variables, a
Through variable and an Across variable. Since these variables are closely
related, their orientation is defined with one direction. For example, if an
element is oriented from port A to port B, it implies that the Through variable
(TV) is positive if it “flows” from A to B, and the Across variable is determined

1-6

Basic Principles of Modeling Physical Networks

as AV = AVA – AVB, where AVA and AVB are the element node potentials or, in
other words, the values of this Across variable at ports A and B, respectively.

This approach to the direction of variables has the following benefits:

• Provides a simple and consistent way to determine whether an element is
active or passive. Energy is one of the most important characteristics to
be determined during simulation. If the variables direction, or sign, is
determined as described above, their product (that is, the energy) is positive
if the element consumes energy, and is negative if it provides energy to a
system. This rule is followed throughout the Simscape software.

• Simplifies the model description. Symbol A B is enough to specify
variable polarity for both the Across and the Through variables.

• Lets you apply the oriented graph theory to network analysis and design.

As an example of variables direction rules, let us consider the Ideal Force
Source block. In this block, as in many other mechanical blocks, port C is
associated with the source reference point (case), and port R is associated
with the rod.

1-7

1 Modeling Physical Systems

The block positive direction is from port C to port R. This means that the force
is positive if it acts in the direction from C to R, and causes bodies connected
to port R to accelerate in the positive direction. The relative velocity is
determined as v = vC – vR, where vR, vC are the absolute velocities at ports R
and C, respectively, and it is negative if velocity at port R is greater than that
at port C. The power generated by the source is computed as the product of
force and velocity, and is negative if the source provides energy to the system.

All the elements in a network are divided into active and passive elements,
depending on whether they deliver energy to the system or dissipate (or store)
it. Active elements (force and velocity sources, flow rate and pressure sources,
etc.) must be oriented strictly in accordance with the line of action or function
that they are expected to perform in the system, while passive elements
(dampers, resistors, springs, pipelines, etc.) can be oriented either way.

Connector Ports and Connection Lines
Simscape blocks may have the following types of ports:

• Physical Conserving ports — Bidirectional ports (for example, hydraulic
or mechanical) that represent physical connections and relate physical
variables based on the Physical Network approach.

• Physical Signal ports — Unidirectional ports transferring signals that use
an internal Simscape engine for computations.

Each of these ports and connections between them are described in greater
detail below.

1-8

Basic Principles of Modeling Physical Networks

Physical Conserving Ports
Simscape blocks have special Conserving ports . You connect Conserving
ports with Physical connection lines, distinct from normal Simulink lines.
Physical connection lines have no inherent directionality and represent the
exchange of energy flows, according to the Physical Network approach.

• You can connect Conserving ports only to other Conserving ports of the
same type.

• The Physical connection lines that connect Conserving ports together
are bidirectional lines that carry physical variables (Across and Through
variables, as described above) rather than signals. You cannot connect
Physical lines to Simulink ports or to Physical Signal ports.

• Two directly connected Conserving ports must have the same values for all
their Across variables (such as pressure or angular velocity).

• You can branch Physical connection lines. When you do so, components
directly connected with one another continue to share the same Across
variables. Any Through variable (such as flow rate or torque) transferred
along the Physical connection line is divided among the multiple
components connected by the branches. How the Through variable is
divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch
point equals the sum of all its values flowing out.

Each type of Physical Conserving ports used in Simscape blocks uniquely
represents a physical modeling domain. For a list of port types, along with
the Through and Across variables associated with each type, see the table in
“Variable Types” on page 1-4.

Physical Signal Ports
Physical Signal ports carry signals between Simscape blocks. You connect
them with regular connection lines, similar to Simulink signal connections.
Physical Signal ports are used in Simscape block diagrams instead of
Simulink input and output ports to increase computation speed and avoid
issues with algebraic loops. Unlike Simulink signals, which are essentially
unitless, physical signals can have units associated with them. You specify
the units along with the parameter values in the block dialogs, and Simscape

1-9

1 Modeling Physical Systems

software performs the necessary unit conversion operations when solving a
physical network.

Simscape Foundation library contains, among other sublibraries, a Physical
Signals block library. These blocks perform math operations and other
functions on physical signals, and allow you to graphically implement
equations inside the Physical Network.

Connecting Simscape Diagrams to Simulink Sources
and Scopes
Simscape block diagrams use physical signals instead of regular Simulink
signals. Therefore, you need converter blocks to connect Simscape diagrams
to Simulink sources and scopes.

Use the Simulink-PS Converter block to connect Simulink sources or other
Simulink blocks to the inputs of a Physical Network diagram. You can
also use it to specify the input signal units. For more information, see the
Simulink-PS Converter block reference page.

Use the PS-Simulink Converter block to connect outputs of a Physical
Network diagram to Simulink scopes or other Simulink blocks. You can also
use it to specify the desired output signal units. For more information, see
the PS-Simulink Converter block reference page.

For an example of using converter blocks to connect Simscape diagrams to
Simulink sources and scopes, see “Creating a Simple Model” on page 1-17.

1-10

Introducing the Simscape™ Block Libraries

Introducing the Simscape Block Libraries

In this section...

“Library Structure Overview” on page 1-11

“Using the Simulink Library Browser to Access the Block Libraries” on
page 1-11

“Using the Command Prompt to Access the Block Libraries” on page 1-12

Library Structure Overview
Simscape block library contains two libraries that belong to the Simscape
product:

• Foundation library — Contains basic hydraulic, pneumatic, mechanical,
electrical, magnetic, thermal, and physical signal blocks, organized into
sublibraries according to technical discipline and function performed

• Utilities library — Contains essential environment blocks for creating
Physical Networks models

In addition, if you have installed any of the add-on products of the Physical
Modeling family, you will see the corresponding libraries under the main
Simscape library.

You can combine all these blocks in your Simscape diagrams to model physical
systems. You can also use the basic Simulink blocks in your diagrams, such as
sources or scopes. See “Connecting Simscape Diagrams to Simulink Sources
and Scopes” on page 1-10 for more information on how to do this.

Using the Simulink Library Browser to Access the
Block Libraries
You can access the blocks through the Simulink Library Browser. To display
the Library Browser, click the Library Browser button in the toolbar of the
MATLAB® desktop or Simulink model window:

1-11

1 Modeling Physical Systems

Alternatively, you can type simulink in the MATLAB Command Window.
Then expand the Simscape entry in the contents tree.

For more information on using the Library Browser, see “Library Browser” in
the Simulink Graphical User Interface documentation.

Using the Command Prompt to Access the Block
Libraries
To access individual block libraries by using the command prompt:

• To open the Simscape library, type simscape in the MATLAB Command
Window.

• To open the main Simulink library (to access generic Simulink blocks), type
simulink in the MATLAB Command Window.

The Simscape library consists of two top-level libraries, Foundation and
Utilities. In addition, if you have installed any of the add-on products of the
Physical Modeling family, you will see the corresponding libraries under
Simscape library, as shown in the following illustration. Some of these
libraries contain second-level and third-level sublibraries. You can expand

1-12

Introducing the Simscape™ Block Libraries

each library by double-clicking its icon. For more details on library hierarchy
and descriptions of block categories, see “Block Reference”.

1-13

1 Modeling Physical Systems

Essential Steps to Building a Physical Model

Building Your Model
The rules that you must follow when building a physical model with Simscape
software are described in “Basic Principles of Modeling Physical Networks” on
page 1-2. This section briefly reviews these rules.

• Build your physical model by using a combination of blocks from the
Simscape Foundation and Utilities libraries. Simscape software lets you
create a network representation of the system under design, based on the
Physical Network approach. According to this approach, each system is
represented as consisting of functional elements that interact with each
other by exchanging energy through their ports.

• Each Simscape diagram (or each topologically distinct physical network in
a diagram) must contain a Solver Configuration block from the Simscape
Utilities library.

• If you have hydraulic elements in your model, the working fluid used in
the hydraulic circuit defines their global parameters, such as fluid density,
fluid kinematic viscosity, fluid bulk modulus, and so on. To specify the
working fluid, attach a Custom Hydraulic Fluid block (or a Hydraulic Fluid
block, available with SimHydraulics block libraries) to each topologically
distinct hydraulic circuit. If no Hydraulic Fluid block or Custom Hydraulic
Fluid block is attached to a circuit, the hydraulic blocks use the default
fluid, which is Skydrol LD-4 at 60°C and with a 0.005 ratio of entrapped air.

• If you have pneumatic elements in your model, default gas properties are
for dry air and ambient conditions of 101325 Pa and 20 degrees Celsius.
Attach a Gas Properties block to each topologically distinct pneumatic
circuit to change gas properties and ambient conditions.

• To connect regular Simulink blocks (such as sources or scopes) to your
physical network diagram, use the connector blocks, as described in “Using
the Physical Signal Ports” on page 1-16.

• Use the incremental modeling approach. Start with a simple model, run
and troubleshoot it, then add the desired special effects. For example, you
can start developing your system by using the Resistive Tube block from
the Foundation library, which accounts only for friction losses. At a later
stage in development, you may want to account for fluid compressibility.

1-14

Essential Steps to Building a Physical Model

You can then replace it with a Hydraulic Pipeline block, available with
SimHydraulics block libraries, or, depending on your application, even with
a Segmented Pipeline block if you also need to account for fluid inertia. For
all these different mathematical models, the element configuration (that
is, the number and type of ports and the associated Through and Across
variables) would remain the same, meaning that the Physical Network
approach lets you substitute models of different levels of complexity
without introducing any changes to the schematic.

Simscape blocks, in general, feature both Conserving ports and Physical
Signal inports and outports .

Using the Conserving Ports
The following rules apply to Conserving ports:

• There are different types of Physical Conserving ports used in Simscape
block diagrams, such as hydraulic, pneumatic, electrical, magnetic,
thermal, mechanical translational, and mechanical rotational. Each type
has specific Through and Across variables associated with it. For more
information, see “Variable Types” on page 1-4.

• You can connect Conserving ports only to other Conserving ports of the
same type.

• The Physical connection lines that connect Conserving ports together
are bidirectional lines that carry physical variables (Across and Through
variables, as described above) rather than signals. You cannot connect
Physical lines to Simulink ports or to Physical Signal ports.

• Two directly connected Conserving ports must have the same values for all
their Across variables (such as voltage or angular velocity).

• You can branch Physical connection lines. When you do so, components
directly connected with one another continue to share the same Across
variables. Any Through variable (such as current or torque) transferred
along the Physical connection line is divided among the multiple
components connected by the branches. How the Through variable is
divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch
point equals the sum of all its values flowing out.

1-15

1 Modeling Physical Systems

Using the Physical Signal Ports
The following rules apply to Physical Signal ports:

• You can connect Physical Signal ports to other Physical Signal ports with
regular connection lines, similar to Simulink signal connections. These
connection lines carry physical signals between Simscape blocks.

• You can connect Physical Signal ports to Simulink ports through special
converter blocks. Use the Simulink-PS Converter block to connect Simulink
outports to Physical Signal inports. Use the PS-Simulink Converter block
to connect Physical Signal outports to Simulink inports.

• Unlike Simulink signals, which are essentially unitless, Physical Signals
can have units associated with them. Simscape block dialogs let you specify
the units along with the parameter values, where appropriate. Use the
converter blocks to associate units with an input signal and to specify the
desired output signal units.

For examples of applying these rules when creating an actual physical model,
see the following section, “Creating a Simple Model” on page 1-17.

1-16

Creating a Simple Model

Creating a Simple Model

In this section...

“Building a Simscape Diagram” on page 1-17

“Modifying Initial Settings” on page 1-25

“Running the Simulation” on page 1-26

“Adjusting the Parameters” on page 1-29

Building a Simscape Diagram
In this example, you are going to model a simple mechanical system and
observe its behavior under various conditions. This tutorial illustrates the
essential steps to building a physical model, described in the previous section,
and makes you familiar with using the basic Simscape blocks.

The following schematic represents a simple model of a car suspension. It
consists of a spring and damper connected to a body (represented as a mass),
which is agitated by a force. You can vary the model parameters, such as the
stiffness of the spring, the mass of the body, or the force profile, and view the
resulting changes to the velocity and position of the body.

1-17

1 Modeling Physical Systems

To create an equivalent Simscape diagram, follow these steps:

1 Open the Simscape and Simulink block libraries, as described in
“Introducing the Simscape Block Libraries” on page 1-11.

2 Create a new model. To do this, click the New button on the Library
Browser’s toolbar (Windows only) or choose New from the library window’s
File menu and select Model. The software creates an empty model in
memory and displays it in a new model editor window.

Note Alternately, you can type ssc_new at the MATLAB Command
prompt, to create a new model prepopulated with certain required and
commonly-used blocks. For more information, see “Creating a New
Simscape Model”.

3 Open the Simscape > Foundation Library > Mechanical > Translational
Elements library.

4 Drag the Mass, Translational Spring, Translational Damper, and two
Mechanical Translational Reference blocks into the model window.

1-18

Creating a Simple Model

5 Orient the blocks as shown in the following illustration. To rotate a block,
select it and press Ctrl+R.

6 Connect the Translational Spring, Translational Damper, and Mass blocks
to one of the Mechanical Translational Reference blocks as shown in the
next illustration.

1-19

1 Modeling Physical Systems

7 To add the representation of the force acting on the mass, open the
Simscape > Foundation Library > Mechanical > Mechanical Sources library
and add the Ideal Force Source block to your diagram.

To reflect the correct direction of the force shown in the original schematic,
flip the block by selecting Format > Flip Block > Up-Down from the top
menu bar of the model window. Connect the block’s port C (for “case”) to
the second Mechanical Translational Reference block, and its port R (for
“rod”) to the Mass block, as shown below.

1-20

Creating a Simple Model

8 Add the sensor to measure speed and position of the mass. Place the Ideal
Translational Motion Sensor block from the Mechanical Sensors library
into your diagram and connect it as shown below.

1-21

1 Modeling Physical Systems

9 Now you need to add the sources and scopes. They are found in the regular
Simulink libraries. Open the Simulink > Sources library and copy the
Signal Builder block into the model. Then open the Simulink > Sinks
library and copy two Scope blocks. Rename one of the Scope blocks to
Velocity and the other to Position.

1-22

Creating a Simple Model

10 Every time you connect a Simulink source or scope to a Simscape diagram,
you have to use an appropriate converter block, to convert Simulink signals
into physical signals and vice versa. Open the Simscape > Utilities library
and copy a Simulink-PS Converter block and two PS-Simulink Converter
blocks into the model. Connect the blocks as shown below.

1-23

1 Modeling Physical Systems

11 Each topologically distinct physical network in a diagram requires
exactly one Solver Configuration block, found in the Simscape > Utilities
library. Copy this block into your model and connect it to the circuit by
creating a branching point and connecting it to the only port of the Solver
Configuration block. Your diagram now should look like this.

1-24

Creating a Simple Model

12 Your block diagram is now complete. Save it as simple_mech1.mdl.

Modifying Initial Settings
After you have put together a block diagram of your model, as described in the
previous section, you need to select a solver and provide the correct values
for configuration parameters.

To prepare for simulating the model, follow these steps:

1 Select a Simulink solver. On the top menu bar of the model window,
select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens, showing the Solver node.

Under Solver options, set Solver to ode15s (Stiff/NDF) andMax step
size to 0.2.

1-25

1 Modeling Physical Systems

Also note that Simulation time is specified to be between 0 and 10
seconds. You can adjust this setting later, if needed.

Click OK to close the Configuration Parameters dialog box.

2 Save the model.

Running the Simulation
After you’ve put together a block diagram and specified the initial settings for
your model, you can run the simulation.

1 The input signal for the force is provided by the Signal Builder block. The
signal profile is shown in the illustration below. It starts with a value of 0,
then at 4 seconds there is a step change to 1, and then it changes back to 0
at 6 seconds. This is the default profile.

1-26

Creating a Simple Model

The Velocity scope outputs the mass velocity, and the Position scope
outputs the mass displacement as a function of time. Double-click both
scopes to open them.

2 To run the simulation, click in the model window toolbar. The Simscape
solver evaluates the model, calculates the initial conditions, and runs the
simulation. For a detailed description of this process, see “How Simscape
Simulation Works” on page 2-2. Completion of this step may take a few
seconds. The message in the bottom-left corner of the model window
provides the status update.

3 Once the simulation starts running, the Velocity and Position scope
windows display the simulation results, as shown in the next illustration.

1-27

1 Modeling Physical Systems

In the beginning, the mass is at rest. Then at 4 seconds, as the input signal
changes abruptly, the mass velocity spikes in the positive direction and
gradually returns to zero. The mass position at the same time changes
more gradually, on account of inertia and damping, and stays at the new
value as long as the force is acting upon it. At 6 seconds, when the input
signal changes back to zero, the velocity gets a mirror spike, and the mass
gradually returns to its initial position.

1-28

Creating a Simple Model

You can now adjust various inputs and block parameters and see their effect
on the mass velocity and displacement.

Adjusting the Parameters
After running the initial simulation, you can experiment with adjusting
various inputs and block parameters.

Try the following adjustments:

1 Change the force profile.

2 Change the model parameters.

3 Change the mass position output units.

Changing the Force Profile
This example shows how a change in the input signal affects the force profile,
and therefore the mass displacement.

1 Double-click the Signal Builder block to open it.

2 Click the first vertical segment of the signal profile and drag it from 4 to 2
seconds, as shown below. Close the block dialog.

1-29

1 Modeling Physical Systems

3 Run the simulation. The simulation results are shown in the following
illustration.

1-30

Creating a Simple Model

Changing the Model Parameters
In our model, the force acts on a mass against a translational spring and
damper, connected in parallel. This example shows how changes in the spring
stiffness and damper viscosity affect the mass displacement.

1 Double-click the Translational Spring block. Set its Spring rate to 2000
N/m.

1-31

1 Modeling Physical Systems

2 Run the simulation. The increase in spring stiffness results in smaller
amplitude of mass displacement, as shown in the following illustration.

3 Next, double-click the Translational Damper block. Set its Damping
coefficient to 500 N/(m/s).

4 Run the simulation. Because of the increase in viscosity, the mass is slower
both in reaching its maximum displacement and in returning to the initial
position, as shown in the following illustration.

1-32

Creating a Simple Model

Changing the Mass Position Output Units
In our model, we have used the PS-Simulink Converter block in its default
parameter configuration, which does not specify units. Therefore, the
Position scope outputs the mass displacement in the default length units,
that is, in meters. This example shows how to change the output units for the
mass displacement to millimeters.

1 Double-click the PS-Simulink Converter block. Type mm in the Output
signal unit combo box and click OK.

2 Run the simulation. In the Position scope window, click to autoscale
the scope axes. The mass displacement is now output in millimeters, as
shown in the following illustration.

1-33

1 Modeling Physical Systems

1-34

Modeling Best Practices

Modeling Best Practices

In this section...

“Grounding Rules” on page 1-35

“Avoiding Numerical Simulation Issues” on page 1-38

Grounding Rules
This section contains guidelines for using domain-specific reference blocks
(such as Electrical Reference, Mechanical Translational Reference, and so
on) in Simscape diagrams, along with examples of correct and incorrect
configurations.

Add reference blocks to your models according to the following rules:

• “Each Domain Requires at Least One Reference Block” on page 1-35

• “Each Circuit Requires at Least One Reference Block” on page 1-36

• “Multiple Connections to the Domain Reference Are Allowed Within a
Circuit” on page 1-37

Each Domain Requires at Least One Reference Block
Within a physical network, each domain must contain at least one reference
block of the appropriate type. For example, the electromechanical model
shown in the following diagram has both Electrical Reference and Rotational
Reference blocks attached to the appropriate circuits.

1-35

1 Modeling Physical Systems

Each Circuit Requires at Least One Reference Block
Each topologically distinct circuit within a domain must contain at least one
reference block. Some blocks, such as an Ideal Transformer, interface two
parts of the network but do not convey information about signal levels relative
to the reference block. In the following diagram, there are two separate
electrical circuits, and the Electrical Reference blocks are required on both
sides of the Ideal Transformer block.

1-36

Modeling Best Practices

The next diagram would produce an error because it is lacking an electrical
reference in the circuit of the secondary winding.

The following diagram, however, will not produce an error because the
resistor defines the output voltage relative to the ground reference.

Multiple Connections to the Domain Reference Are Allowed
Within a Circuit
More that one reference block may be used within a circuit to define multiple
connections to the domain reference:

1-37

1 Modeling Physical Systems

• Electrical conserving ports of all the blocks that are directly connected to
ground must be connected to an Electrical Reference block.

• All translational ports that are rigidly clamped to the frame (ground) must
be connected to a Mechanical Translational Reference block.

• All rotational ports that are rigidly clamped to the frame (ground) must be
connected to a Mechanical Rotational Reference block.

• Hydraulic conserving ports of all the blocks that are referenced to
atmosphere (for example, suction ports of hydraulic pumps, or return ports
of valves, cylinders, pipelines, if they are considered directly connected to
atmosphere) must be connected to a Hydraulic Reference block.

For example, the following diagram correctly indicates two separate
connections to an electrical ground.

Avoiding Numerical Simulation Issues
Certain configurations of physical modeling blocks can cause numerical
difficulties or slow down your simulation. When this happens, Simscape
solver issues a warning in the MATLAB workspace and, if it fails to initialize,
a Simscape error.

1-38

Modeling Best Practices

In electrical circuits, common examples that can cause this behavior include
voltage sources connected in parallel with capacitors, inductors connected in
series with current sources, voltage sources connected in parallel, and current
sources connected in series. Often, the cause of the numerical difficulty is
immediately apparent. For example, two voltage sources in parallel must
have identical voltage values; otherwise, the ports connecting them would not
be physical conserving ports. In practical circuits, topologies such as parallel
voltage sources are possible, and small difference in their instantaneous
voltages is possible due to parasitic series resistance.

Note Mathematically, these topologies result in Index-2 differential algebraic
equations (DAEs). Their solution requires two differentiations of the
constraint equations and, as such, it is numerically better to avoid these
component topologies where possible.

There are two approaches to resolving these difficulties. The first is to change
the circuit to an equivalent simpler one. In the example of two parallel voltage
sources, one source can be simply deleted. The same applies to two series
current sources, the deleted one being replaced by a short circuit. For some
circuit topologies, however, it is not possible to find an equivalent simpler one
that resolves the problem, and the second approach is needed.

The second approach is to include small parasitic resistances in the
component. In the Simscape Foundation library, the Capacitor and Inductor
blocks include such parasitic terms, so that you can connect capacitances in
parallel with voltage sources and inductors in series with current sources. If
your circuit does not have any such topologies, then you can change the default
parasitic terms to zero. Note that other blocks do not contain these parasitic
terms, for example, the Mutual Inductor block. Therefore, if you wanted to
connect a mutual inductor primary in series with a current source, you would
need to introduce your own parasitic conductance across the primary winding.

Example of Using a Parasitic Resistance to Avoid Numerical
Simulation Issues
The following diagram models a differentiator that might be used as part of a
Proportional-Integral-Derivative (PID) controller. You can open this model by
typing ssc_differentiator in the MATLAB Command Window.

1-39

1 Modeling Physical Systems

Simulate the model, and you will see that the output is minus the derivative
of the input sinusoid.

Now open the capacitor C block dialog, and set the series resistance to zero.
The model now runs very slowly, and issues a warning:

Warning: problems possible for transient initialization, as well as stepsize control

for transient solve, due to equations of one or more components:

'ssc_differentiator/2V pk-k, 1KHz'

1-40

Modeling Best Practices

'ssc_differentiator/Op-Amp'

'ssc_differentiator/C'

The cause of the warning is that the circuit effectively connects the voltage
source in parallel with the capacitor. This is because an ideal op-amp
satisfies V+ = V- , where V+ and V- are the noninverting and inverting inputs,
respectively. This is an example where it is not possible to replace the circuit
with an equivalent simpler one, and a parasitic small resistance has to be
introduced.

1-41

1 Modeling Physical Systems

Modeling Pneumatic Systems

In this section...

“Intended Applications” on page 1-42

“Assumptions and Limitations” on page 1-42

“Fundamental Equations” on page 1-43

“Network Variables” on page 1-44

“Connection Constraints” on page 1-45

“References” on page 1-45

Intended Applications
The Foundation library contains basic pneumatic elements, such as orifices,
chambers, and pneumatic-mechanical converters, as well as pneumatic
sensors and sources. Use these blocks to model pneumatic systems, for
applications such as:

• Factory automation — basic pneumatic linear/rotational actuators, valves
(variable orifices), and air supply

• Robotics — robotic arms and haptic interfaces

• Gaseous transportation systems and pipelines

You can also use these blocks to model dry air and low-pressure flows, for
example, for HVAC applications.

Assumptions and Limitations
Pneumatic block models are based on the following assumptions:

• Working fluid is an ideal gas satisfying the ideal gas law.

• Specific heats at constant pressure and constant volume, cp and cv, are
constant.

1-42

Modeling Pneumatic Systems

• Processes are adiabatic, that is, there is no heat transfer between
components and the environment (except for components with a separate
thermal port).

• Gravitational effects can be neglected, that is, underlying equations contain
no head pressures due to gravity.

Fundamental Equations
The energy balance for a control volume [1] is

dE
dt

Q W m h
v

gz m h
v

gcv
cv cv i i

i
i

i
o o

o= − + + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− + +∑
2 2

2 2
zzo

o

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑

where

Ecv Control volume total energy

Qcv Heat energy per second added to the gas through the boundary

Wcv Mechanical work per second performed by the gas

hi, ho Inlet and outlet enthalpies

vi, vo Gas inlet and outlet velocities

g Acceleration due to gravity

zi, zo Elevations at inlet and outlet ports

mi, mo Mass flow rates in and out of the control volume

The equation is an accounting balance for the energy of the control volume. It
states that the rate of energy increase or decrease within the control volume
equals the difference between the rates of energy transfer in and out across the
boundary. The mechanisms of energy transfer are heat and work, as for closed
systems, and the energy that accompanies the mass entering and exiting.

Pneumatic block models make several simplifying assumptions, as described
previously.

1-43

1 Modeling Physical Systems

The ideal gas law relates pressure, density, and temperature:

p RT= ρ

where

p Absolute pressure

ρ Gas density

R Specific gas constant

T Absolute gas temperature

Also, the specific enthalpies for an ideal gas at temperature T and constant
pressure and constant volume are given by:

h c Tp=

h c Tv=

The pneumatic components also use the mass continuity equation:

d
dt V

m mi o
ρ = −()1

where ρ is the density of the gas within the component. For components with
no internal mass of gas, the equation simplifies to:

G m mi o= =

where G is the mass flow rate through the component.

For specific equations used in each block, see the block reference pages.

Network Variables
The Across variables are pressure and temperature, and the Through
variables are mass flow rate and heat flow. Note that these choices result in

1-44

Modeling Pneumatic Systems

a pseudo-bond graph, because the product of pressure and mass flow rate
is not power.

Connection Constraints
Every node in a pneumatic network must have a defined temperature as
well as pressure. This rule places some constraints on how you connect
the pneumatic elements. In effect, every node should have a volume of
fluid associated with it. When the ideal gas law is applied, this volume
of fluid determines the relationship between temperature and pressure.
Some elements already have a volume of fluid associated with them, and
therefore having just one of these components connected to a node satisfies
this condition. Such blocks include Constant Volume Pneumatic Chamber,
Pneumatic Piston Chamber, Rotary Pneumatic Piston Chamber, and
Pneumatic Atmospheric Reference.

An exception to the above rule (that every node must have a volume of fluid
associated with it) occurs when two nodes are connected by a component for
which the heat equation says that the temperatures are equal. In this case,
just one of the nodes needs to be connected to a component with associated
volume of fluid. Such components include the pressure and flow rate sources.

For models that represent an actual pneumatic network, these constraints
should have no impact. For example, connecting two orifices in series makes
no physical sense because the underlying assumption of the orifice equation
is that gas is discharged into a volume of fluid. Therefore, modeling actual
physical systems should automatically satisfy these constraints.

References
[1] Moran M.J. and Shapiro H.N. Fundamentals of Engineering
Thermodynamics. Second edition. New York: John Wiley & Sons, 1992.

1-45

1 Modeling Physical Systems

1-46

2

Simulating Physical Models

• “How Simscape Simulation Works” on page 2-2

• “Working with Solvers” on page 2-8

• “Troubleshooting Simulation Errors” on page 2-13

• “Finding an Operating Point” on page 2-22

• “Linearizing at an Operating Point” on page 2-28

• “Generating Code” on page 2-35

• “Limitations” on page 2-39

2 Simulating Physical Models

How Simscape Simulation Works

In this section...

“Simscape Simulation Phases” on page 2-2

“Model Validation” on page 2-4

“Network Construction” on page 2-4

“Equation Construction” on page 2-5

“Computing Initial Conditions” on page 2-5

“Performing Transient Initialization” on page 2-6

“Transient Solve” on page 2-6

Simscape Simulation Phases
Simscape software gives you multiple ways to simulate and analyze physical
systems in the Simulink environment. Running a physical model simulation
is similar to running a simulation of any other Simulink model. It entails
setting various simulation options, starting the simulation, and viewing the
simulation results. See the Using Simulink documentation for a general
discussion of these topics. This chapter focuses on aspects of simulation
specific to Simscape and SimHydraulics models. Refer to the SimMechanics™
and SimDriveline™ documentation for specifics of simulating and analyzing
SimMechanics and SimDriveline models.

You might find this brief overview helpful for constructing models and
understanding errors.

Simscape simulation sequence is shown in the following flow chart.

2-2

http://www.mathworks.com/access/helpdesk/help/toolbox/physmod/mech/
http://www.mathworks.com/access/helpdesk/help/toolbox/physmod/drive/

How Simscape™ Simulation Works

It consists of the following major phases:

1 “Model Validation” on page 2-4

2 “Network Construction” on page 2-4

3 “Equation Construction” on page 2-5

4 “Computing Initial Conditions” on page 2-5

2-3

2 Simulating Physical Models

5 “Performing Transient Initialization” on page 2-6

6 “Transient Solve” on page 2-6

Model Validation
Simscape solver first validates the model configuration and checks your data
entries from the block dialogs. In particular:

• Each topologically distinct physical network in a diagram requires exactly
one Solver Configuration block.

• If your model contains hydraulic elements, each topologically distinct
hydraulic circuit in a diagram requires a Custom Hydraulic Fluid block
(or Hydraulic Fluid block, available with SimHydraulics block libraries)
to be connected to it. These blocks define the fluid properties that act as
global parameters for all the blocks connected to the hydraulic circuit. If
no hydraulic fluid block is attached to a loop, the hydraulic blocks in this
loop use the default fluid. However, more than one hydraulic fluid block in
a loop generates an error.

Similarly, if your model contains pneumatic elements, default gas
properties for a pneumatic network are for dry air and ambient conditions
of 101325 Pa and 20 degrees Celsius. Attaching a Gas Properties block to a
pneumatic circuit lets you change gas properties and ambient conditions
for all the blocks connected to the circuit. However, more than one Gas
Properties block in a pneumatic circuit generates an error.

• Signal units specified in a Simulink-PS Converter block must match
the input type expected by the Simscape block connected to it. For
example, when you provide the input signal for an Ideal Angular Velocity
Source block, specify angular velocity units, such as rad/s or rpm, in the
Simulink-PS Converter block, or leave it unitless. Similarly, units specified
in a PS-Simulink Converter block must match the type of physical signal
provided by the Simscape block outport.

Network Construction
After validating the model, Simscape solver constructs the physical network
based on the following principles:

• Two directly connected Conserving ports have the same values for all their
Across variables (such as voltage or angular velocity).

2-4

How Simscape™ Simulation Works

• Any Through variable (such as current or torque) transferred along
the Physical connection line is divided among the multiple components
connected by the branches. For each Through variable, the sum of all its
values flowing into a branch point equals the sum of all its values flowing
out.

Equation Construction
Based on the network configuration, the parameter values provided in the
block dialogs, and the global parameters defined by the fluid properties, if
applicable, Simscape solver constructs the system of equations for the model.

These equations contain variables of the following types:

• Dynamic— Time derivative of this variable appears in equations. Dynamic
variables are the independent states for simulation.

• Algebraic— Time derivative of this variable does not appear in equations.
Algebraic variables are always dependent (on dynamic variables, other
algebraic variables, or inputs).

Computing Initial Conditions
Simscape solver computes the initial conditions only once, in the beginning of
simulation (t=0).

Initial conditions are computed by setting all dynamic variables to 0, except
those corresponding to blocks that have an initial condition field in their
block dialogs, and solving for all the system variables. The blocks with initial
conditions have their dynamic variables set according to the user-provided
value in the block dialog. Initial conditions can only be set on dynamic
variables, because these are the independent states for simulation. For
example, the Translational Spring block has the Initial deformation
parameter, so the corresponding spring position state is set to the initial offset
specified in the block dialog. Refer to the block reference documentation to
find which blocks have initial conditions specified through their dialogs.

It is required that the initial conditions for dependent dynamic states be set
consistently. For example, the initial voltages on two parallel capacitors must
be equal. When the solver detects dependent dynamic variables, it performs

2-5

2 Simulating Physical Models

a check and issues an error if the initial conditions on dynamic states are
not set consistently.

This concludes the initial conditions computation when the Start simulation
from steady state check box in the Solver block dialog box is not selected
(this is the default).

When this box is selected, the solver attempts to find the steady state that
would result if the inputs to the system were held constant for a sufficiently
large time, starting from the initial state obtained from the initial conditions
computation, described previously. Although the solver tries to find the
particular steady state resulting from the given initial conditions, it is
not guaranteed to do so. All that is guaranteed is that if the steady-state
solve succeeds, the state found is a steady state (within tolerance). Steady
state means that the system variables are no longer changing with time.
Simulation then starts from this steady state.

Note If the simulation fails at or near the start time when you use the Start
simulation from steady state option, consider clearing the check box and
simulating with the plain initial conditions computation only.

Performing Transient Initialization
After computing the initial conditions, or after a subsequent event (such as
a discontinuity resulting, for example, from a valve opening, or a hard stop
hitting the stop), Simscape solver performs transient initialization. This is
done by fixing all dynamic variables and solving for algebraic variables and
derivatives of dynamic variables. The goal of transient initialization is to
provide a consistent set of initial conditions for the next transient solve phase.

Transient Solve
Finally, Simscape solver performs transient solve of the system of equations.
In transient solve, continuous differential equations are integrated in time
to compute all the variables as a function of time.

Simscape solver continues to perform the simulation according to the results
of the transient solve until it encounters an event, such as a zero crossing or

2-6

How Simscape™ Simulation Works

discontinuity. The event may be within the physical network or elsewhere in
the Simulink model. If an event is encountered, Simscape solver returns to
the phase of transient initialization, and then back to transient solve. This
cycle continues until the end of simulation.

2-7

2 Simulating Physical Models

Working with Solvers

In this section...

“Selecting a Solver” on page 2-8

“Input Filtering” on page 2-10

Selecting a Solver
It is possible to choose any variable-step or fixed-step solver for models
containing Simscape blocks. However, implicit solvers, such as ode14x,
ode23t, and ode15s, are a better choice for a typical model. In particular,
for stiff systems, implicit solvers typically take many fewer timesteps than
explicit solvers, such as ode45, ode113, and ode1.

When you first create a model, the default Simulink solver is ode45. To select
a different solver, follow a procedure similar to that in “Modifying Initial
Settings” on page 1-25.

If you do not modify the default solver and your system is stiff, your
performance may not be optimal. To alert you to a potential issue, the system
issues a warning when you use an explicit solver in a model containing
Simscape blocks. You can turn off this default warning or changed it to an
error for a particular model, by following these steps:

1 From the top menu bar in the model window, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape.

2-8

Working with Solvers

3 Select the desired option from the Explicit solver used in model
containing Physical Networks blocks drop-down list:

• warning — Makes the system issue a warning upon simulation if the
model uses an explicit solver. This is the default option, designed to alert
you to a potential issue if you use the default solver.

• error— Makes the system issue an error upon simulation if the model
uses an explicit solver. If your model is stiff, and the use of explicit
solvers undesirable, you may choose to select this option to avoid
troubleshooting errors in the future.

• none — Turns off issuing a warning or error upon simulation with
explicit solver. For models that are not stiff, explicit solvers can be
effective, often taking fewer timesteps than implicit solvers. If you work
with such models and use explicit solvers, select this option to turn off
the warning upon simulation.

2-9

2 Simulating Physical Models

4 Click OK.

Input Filtering
If you use an explicit solver, you may need to provide time derivatives of
some of the input signals. By default, needed input derivatives are provided
by filtering the input through a low-pass filter. The derivative of the filtered
input can then be computed by the Physical Networks simulation engine.

You can control the way you provide time derivatives for each input signal by
configuring the Simulink-PS Converter block connected to it:

1 Double-click the Simulink-PS Converter block to open its dialog box.

2 Click the Derivatives tab.

2-10

Working with Solvers

3 To avoid filtering the input signal, set Input derivatives parameter to
First derivative of input user-provided.

When you select this option, a second Simulink input port appears on the
Simulink-PS Converter block, to let you connect the signal providing input
derivatives. Input filtering is then turned off.

4 If you cannot provide the first derivative of the input signal as an additional
input signal to the Simulink-PS Converter block, leave the Input
derivatives parameter set to No user-input provided derivatives. In
this case, however, it is important to set the appropriate Input filtering
time constant parameter value for your model.

The filter time constant controls the filtering of the input signal. The
filtered input follows the true input but is smoothed, with a lag on the order
of the time constant chosen. You should set the time constant to a value
no larger than the smallest time interval of interest in the system. The
trade-off in choosing a very small time constant is that the filtered input
signal will be closer to the true input signal, at the cost of increasing the
stiffness of the system and slowing down the simulation.

Because input filtering can appreciably change the input signal and
drastically affect simulation results if the time constant is too large, a
warning is issued when input filtering is used. The warning indicates which
Simulink-PS Converter blocks have their input signals filtered. You can turn
off this warning (or change it to an error) by changing the preferences on the
Simscape pane of the Configuration Parameters dialog box:

1 From the top menu bar in the model window, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape.

2-11

2 Simulating Physical Models

3 Select the desired option from the Input filtering used in model
containing Physical Networks blocks drop-down list:

• warning — Makes the system issue a warning upon simulation if the
model uses input filtering. The warning contains a list of Simulink-PS
Converter blocks that use input filtering. This is the default option.

• error— Makes the system issue an error upon simulation if the model
uses input filtering. If you select this option and use an explicit solver,
you have to provide first derivative of the input signal as an additional
input signal to each Simulink-PS Converter block. For details, see the
Simulink-PS Converter block reference page.

• none— Turns off issuing a warning or error upon simulation when the
model uses input filtering.

4 Click OK.

2-12

Troubleshooting Simulation Errors

Troubleshooting Simulation Errors

In this section...

“Troubleshooting Tips and Techniques” on page 2-13

“System Configuration Errors” on page 2-14

“Numerical Simulation Issues” on page 2-17

“Initial Conditions Solve Failure” on page 2-19

“Transient Simulation Issues” on page 2-20

Troubleshooting Tips and Techniques
Simscape simulations can stop before completion with one or more error
messages. This section discusses generic error types and error-fixing
strategies. You might find the previous section, “How Simscape Simulation
Works” on page 2-2, useful for identifying and tracing errors.

If a simulation failed:

• Review the model configuration. If your error message contains a list of
blocks, look at these blocks first. Also look for:

- Wrong connections — Verify that the model makes sense as a physical
system. For example, look for actuators connected against each other,
so that they try to move in opposite directions, or incorrect connections
to reference nodes that prevent movement. In electrical circuits, verify
polarity and connections to ground.

- Wrong units — Simscape unit manager offers great flexibility in using
physical units. However, you must exercise care in specifying the
correct units, especially in the Simulink-PS Converter and PS-Simulink
Converter blocks. Start analyzing the circuit by opening all the converter
blocks and checking the correctness of specified units.

• Try to simplify the circuit. Unnecessary circuit complexity is the most
common cause of simulation errors.

• Break the system into subsystems and test every unit until you are positive
that the unit behaves as expected.

2-13

2 Simulating Physical Models

• Build the system by gradually increasing its complexity.

The MathWorks recommends that you build, simulate, and test your model
incrementally. Start with an idealized, simplified model of your system,
simulate it, verify that it works the way you expected. Then incrementally
make your model more realistic, factoring in effects such as friction loss,
motor shaft compliance, hard stops, and the other things that describe
real-world phenomena. Simulate and test your model at every incremental
step. Use subsystems to capture the model hierarchy, and simulate and test
your subsystems separately before testing the whole model configuration.
This approach helps you keep your models well organized and makes it easier
to troubleshoot them.

System Configuration Errors

• “Missing Solver Configuration Block” on page 2-14

• “Extra Fluid Block or Gas Properties Block” on page 2-14

• “Missing Reference Block” on page 2-15

• “Basic Errors in Physical System Representation” on page 2-15

Missing Solver Configuration Block
Each topologically distinct Simscape block diagram requires exactly one
Solver Configuration block to be connected to it. The Solver Configuration
block specifies the global environment information and provides parameters
for the solver that your model needs before you can begin simulation.

If you get an error message about a missing Solver Configuration block,
open the Simscape Utilities library and add the Solver Configuration block
anywhere on the circuit.

Extra Fluid Block or Gas Properties Block
If your model contains hydraulic elements, each topologically distinct
hydraulic circuit in a diagram requires a Custom Hydraulic Fluid block
(or Hydraulic Fluid block, available with SimHydraulics block libraries)
to be connected to it. These blocks define the fluid properties that act as
global parameters for all the blocks connected to the hydraulic circuit. If no

2-14

Troubleshooting Simulation Errors

hydraulic fluid block is attached to a loop, the hydraulic blocks in this loop
use the default fluid. However, more than one hydraulic fluid block in a loop
generates an error.

Similarly, more than one Gas Properties block in a pneumatic circuit
generates an error.

If you get an error message about too many domain-specific global parameter
blocks attached to the network, look for an extra Hydraulic Fluid block,
Custom Hydraulic Fluid block, or Gas Properties block and remove it.

Missing Reference Block
Simscape libraries contain domain-specific reference blocks, which represent
reference points for the conserving ports of the appropriate type. For
example, each topologically distinct electrical circuit must contain at least
one Electrical Reference block, which represents connection to ground.
Similarly, hydraulic conserving ports of all the blocks that are referenced
to atmosphere (for example, suction ports of hydraulic pumps, or return
ports of valves, cylinders, pipelines, if they are considered directly connected
to atmosphere) must be connected to a Hydraulic Reference block, which
represents connection to atmospheric pressure. Mechanical translational
ports that are rigidly clamped to the frame (ground) must be connected to a
Mechanical Translational Reference block, and so on.

If you get an error message about a missing reference block, or node, check
your system configuration and add the appropriate reference block based
on the rules described above. For more information and examples of best
modeling practices, see “Grounding Rules” on page 1-35.

Basic Errors in Physical System Representation
Physical systems are represented in the Simscape modeling environment
as Physical Networks according to the Kirchhoff’s generalized circuit laws.
Certain model configurations violate these laws and are therefore illegal.
There are two broad violations:

• Sources of domain-specific Across variable connected in parallel (for
example, voltage sources, hydraulic pressure sources, or velocity sources)

2-15

2 Simulating Physical Models

• Sources of domain-specific Through variable connected in series (for
example, electric current sources, hydraulic flow rate sources, force or
torque sources)

These configurations are impossible in the real world and illegal theoretically.
If your model contains such a configuration, upon simulation the solver issues
an error followed by a list of blocks, as shown in the following example.

Example. The model shown in the following illustration contains two Ideal
Translational Velocity Sources connected in parallel. This produces two
independent velocity loops, and the solver cannot construct a consistent
system of equations for the circuit.

When you try to simulate the model, the solver issues the following error
messages:

Nonlinear solver: failed to converge, residual norm too large.

Transient initialization, solving for consistent states and modes, failed to converge.

Warning: equations of one or more components may be dependent or inconsistent. This can

cause problems in transient initialization. Here is the set of components involved:

'vsloop_diagnostics_example/Ideal Translational Velocity Source1'

2-16

Troubleshooting Simulation Errors

'vsloop_diagnostics_example/Ideal Translational Velocity Source'

Initial conditions solve failed to converge.

You can simplify the system by using a single Ideal Translational Velocity
Source block, with its control signal supplied by the Sine Wave block. Add the
constant value from the second source to the bias of the sine wave.

Numerical Simulation Issues

• “Dependent Dynamic States” on page 2-17

• “Parameter Discontinuities” on page 2-19

Numerical simulation issues can be either a result of certain circuit
configurations or of parameter discontinuities.

Dependent Dynamic States
Certain circuit configurations can result in dependent dynamic states, or the
so-called higher-index differential algebraic equations (DAEs). Simscape
solver can handle dependencies among dynamic states that are linear in
the states and independent of time and inputs to the system. For example,
capacitors connected in parallel or inductors connected in series will not cause
any problems. Other circuit configurations with dependent dynamic states,
in certain cases, may slow down the simulation or lead to an error when the
solver fails to initialize.

In electrical circuits, common examples that can cause this behavior include
voltage sources connected in parallel with capacitors, inductors connected in
series with current sources, and so on. To address this issue, the Capacitor
and Inductor blocks include parasitic terms (parallel conductance and series
resistance). For other blocks that do not contain these parasitic terms, you
might need to introduce your own parasitic conductance or resistance into
the circuit. For more information on best modeling practices, as well as for
troubleshooting suggestions, see “Avoiding Numerical Simulation Issues”
on page 1-38.

Examples in other domains include direct connections between a velocity
source and a mass, a force source and a spring, a pressure source and a

2-17

2 Simulating Physical Models

hydraulic accumulator, or a flow rate source and a fluid inertia. If you
encounter this error, try to either simplify the circuit or include additional
blocks, such as spring-damper combinations or constant orifices, to avoid the
direct connection that results in dependent states.

Example. The model shown in the following illustration contains an Ideal
Translational Velocity Source directly connected to a Mass.

When you try to simulate the model, the solver issues the following error
messages:

Nonlinear solver: failed to converge, residual norm too large.

Transient initialization, solving for consistent states and modes, failed to converge.

Warning: problems possible for transient initialization, as well as stepsize control

for transient solve, due to equations of one or more components:

'mech_model1/Mechanical Translational Reference'

'mech_model1//Ideal Translational Velocity Source'

'mech_model1/Mass'

Initial conditions solve failed to converge.

2-18

Troubleshooting Simulation Errors

You can try adding a very stiff spring between the velocity source and the
mass. To avoid the possibility of high-frequency oscillations introduced by the
spring, connect it in parallel with a damper with a high damping coefficient.

Parameter Discontinuities
Nonlinear parameters, dependent on time or other variables, may also lead
to numerical simulation issues as a result of parameter discontinuity. These
issues usually manifest themselves at the transient initialization stage (see
“Transient Simulation Issues” on page 2-20).

Initial Conditions Solve Failure
The initial conditions solve, which solves for all system variables (with initial
conditions specified on some system variables), may fail. This has several
possible causes:

• System configuration error. In this case, the Simulation Diagnostics
window usually contains additional, more specific, error messages, such
as a missing reference node, or a warning about the component equations,
followed by a list of components involved. See “System Configuration
Errors” on page 2-14 for more information.

2-19

2 Simulating Physical Models

• Dependent dynamic state. In this case, the Simulation Diagnostics
window also may contain additional, more specific, error messages,
such as a warning about the component equations, followed by a list of
components involved. See “Dependent Dynamic States” on page 2-17 for
more information.

• The constraint residual tolerance may be too tight to produce a consistent
solution to the algebraic constraints at the beginning of simulation. You
can try to increase the Constraint Residual Tolerance parameter value
(that is, relax the tolerance) in the Solver Configuration block.

If the Simulation Diagnostics window has other, more specific, error
messages, address them first and try rerunning the simulation. See also
“Troubleshooting Tips and Techniques” on page 2-13.

Transient Simulation Issues

• “Transient Initialization Not Converging” on page 2-20

• “Step-Size-Related Errors” on page 2-21

Transient initialization happens at the beginning of simulation (after
computing the initial conditions) or after a subsequent event, such as a
discontinuity (for example, when a hard stop hits the stop). It is performed
by fixing all dynamic variables and solving for algebraic variables and
derivatives of dynamic variables. The goal of transient initialization is to
provide a consistent set of initial conditions for the next transient solve step.

Transient Initialization Not Converging
Error messages stating that transient initialization failed to converge, or that
a set of consistent initial conditions could not be generated, indicate transient
initialization issues. They can be a result of parameter discontinuity.
Review your model to find the possible sources of discontinuity. See also
“Troubleshooting Tips and Techniques” on page 2-13.

You can also try to decrease the Constraint Residual Tolerance parameter
value (that is, tighten the tolerance) in the Solver Configuration block.

2-20

Troubleshooting Simulation Errors

Step-Size-Related Errors
A typical step-size-related error message may state that the system is unable
to reduce the step size without violating the minimum step size for a certain
number of consecutive times. This error message indicates numerical
difficulties in solving the Differential Algebraic Equations (DAEs) for the
model. This might be caused by dependent dynamic states (higher-index
DAEs) or by the high stiffness of the system. You can try the following:

• Tighten the solver tolerance (decrease the Relative Tolerance parameter
value in the Configuration Parameters dialog box)

• Specify a value, other than auto, for the Absolute Tolerance parameter
in the Configuration Parameters dialog box. Experiment with this
parameter value.

• Tighten the residual tolerance (decrease the Constraint Residual
Tolerance parameter value in the Solver Configuration block)

• Increase the value of the Number of consecutive min step size
violations allowed parameter in the Configuration Parameters dialog box
(set it to a value greater than the number of consecutive step size violations
given in the error message)

• Review the model configuration and try to simplify the circuit, or add small
parasitic terms to your circuit to avoid dependent dynamic states. For more
information, see “Numerical Simulation Issues” on page 2-17.

2-21

2 Simulating Physical Models

Finding an Operating Point

In this section...

“What Is an Operating Point?” on page 2-22

“How to Find Operating Points” on page 2-23

“Finding Operating Points with Simscape, Simulink, and Related Products”
on page 2-24

What Is an Operating Point?
An operating point of a system is a dynamic configuration that satisfies design
and use requirements called operating specifications. You can express such
operating specifications as requirements on the system state x and inputs u.
It is not always possible to find a dynamic state that satisfies all operating
conditions. Also, a system might have multiple operating points satisfying
the same requirements.

Operating points are essential for designing and implementing system
controllers. You can optimize a system at an operating point for performance,
stability, safety, and reliability.

The most important and common type of operating point is a steady state,
where some or all of the system dynamic variables are constant.

Using Operating Points for Linearization
An important motive for finding operating points is linearization, which
determines the system response to small disturbances at an operating point.
Linearization results influence the design of feedback controllers to govern
dynamic behavior near the operating point. A full linearization analysis
requires one or more system outputs, y, in addition to inputs.

See “Linearizing at an Operating Point” on page 2-28.

Example
A pilot flying an aircraft wants to find, for a given environment, a state of the
aircraft engine and control surfaces that produces level, constant-velocity, and

2-22

Finding an Operating Point

constant-altitude flight relative to the ground. The requirements of "level,"
"constant velocity," "constant altitude," and "relative to the ground" constitute
operating specifications. This operating point is a steady state of the aircraft
velocity, altitude, and orientation in space.

How to Find Operating Points
You can provide predefined state and input vectors, x0 and u0, to specify
an operating point. If you do not know an operating point in advance, you
have two methods of identifying an operating point that satisfies operating
specifications.

• “Time-Based Search” on page 2-23: Observing the actual or simulated
behavior of the system in time is more general, but less precise, and usually
requires a trial-and-error process to find a precise operating point.

• “State-Based Search” on page 2-23: If you know the system dynamics, you
can solve for steady states, at least in principle.

Time-Based Search
You can sometimes find operating points and steady states by trial and error
while operating or simulating over some length of time and varying the
system parameters, inputs, and initial conditions. In such a time-based
approach, you isolate and study instants or intervals of time when a system
satisfies the operating specifications. The system state and inputs under
those conditions constitute the operating point, which you can also specify
by an operating or simulation time.

State-Based Search
The alternative to trial-and-error searching for steady states is trimming.
In this state-based approach, you bypass time-based simulation and find
solutions for inputs, outputs, states, and state derivatives satisfying an
operating specification. Trimming specifies inputs and part of a state and
solves the system dynamics for the rest of the state. The resulting full state
and input vectors, x0 and u0, constitute the operating point.

There is no general guarantee that such solutions, x0, exist for given operating
specifications and inputs, u0.

2-23

2 Simulating Physical Models

Checking Discrete System States
An operating point includes the state of discrete system variables that
change in a discontinuous way. In general, you cannot find these states by
small, continuous changes of system variables. Such states usually require
systematic exploration of the discrete variables over the full range of their
possible values.

Finding Operating Points with Simscape, Simulink,
and Related Products
You have a number of ways to find an operating point in a Simscape model.
You can impose operating specifications and isolate operating points using
Simscape and Simulink features and, in some cases, with such related
products as Simulink® Control Design™ and Control System Toolbox™
software. The full state vector of your model contains:

• Simulink components, which can be continuous or discrete.

• Simscape components, which are continuous.

Tip Whichever method that you choose to find an operating point, if you want
to use it for linearization, you must save the operating point information in
the form of a simulation time t0, a state vector x0, and an input vector u0,
or an operating point object.

Simulating in Time to Search for an Operating Point
One way to identify operating points is to simulate your model and inspect its
state x and output y as a time series.

1 In your Simscape model, set up sensor outputs for whatever block outputs
you want to observe.

2 Connect Scope blocks, To Workspace blocks, or both, to your Simscape
block outputs to observe and record simulation behavior.

3 In the Data Import/Export pane of your model Configuration Parameters
settings, select the Time, States, and Output check boxes to record this
simulation information in your workspace.

2-24

Finding an Operating Point

Using the Simscape Steady-State Solver
Most commonly, the operating point that you want is a steady state. You have
a precise method for identifying steady states with the Simscape steady-state
solver, which allows you to isolate steady states more exactly than you can
with ordinary simulation. It is particularly recommended for isolating steady
states of a strongly nonlinear character. You can search for multiple steady
states with the steady-state solver by varying the model inputs, parameters,
and initial conditions.

The Simscape steady-state solver initializes the system and inputs first,
then determines a steady state. In general, the system does not remain in
this initial steady state x(t=0) = x0 during simulation, because the system
inputs u change independently, and the system has to respond by changing
its state x(t).

To implement the steady-state solver:

1 In each, some, or all of the physical networks in your Simscape model,
open the Solver Configuration block.

2 In each block dialog box, select the Start simulation from steady state
check box.

3 In the model Configuration Parameters settings, on the Data
Import/Export pane, select the States check box to record the time series
of x values in your workspace.

If you also have input signals u in the model, you can capture those inputs
by connecting To Workspace blocks to the input Simulink signal lines.

4 Close these dialog boxes and start simulation.

The first vector of values x(t=0) that you capture during simulation reflects
the steady state x0 that the Simscape solver identified.

2-25

2 Simulating Physical Models

Using Simulink Control Design Techniques

Note The techniques described in this section require the Simulink Control
Design product. You must use the features of this product on the Simulink
lines in your model, not directly on Simscape physical network lines or blocks.

The following methods are state-based, allowing you to impose operating
specifications, and work well for simple to moderately complex Simscape
models. The MathWorks™ does not recommend these methods for highly
complex Simscape models.

To find operating points, use the operspec and findop functions, customizing
where necessary. Create an operating specification object with operspec,
then compute an operating point object with findop. The findop function
attempts to find an operating point that satisfies the operating specifications
and reports on its success or failure. If the search is successful, find_op
returns state values satisfying the operating specifications.

You have several choices for operating specifications for the components of
the state vector.

Assumed
Operating
Condition

Operating Specification

Default Request that all state component derivatives be zero.
This is a steady-state for the whole model, not just a
Simscape network within the model.

Nondefault Request any value you want independently for each
state component.

Nondefault Request that a particular state component derivative
be zero.
This is a steady-state condition for that state
component.

2-26

Finding an Operating Point

Additional Simulink Control Design Methods. Instead of the command
line interface, you can use the associated graphical user interface, through
the model menu bar: Tools > Control Design > Linear Analysis. For more
details on the use of operating point specification objects, related functions,
and the graphical interface, see the Simulink Control Design documentation.

Using Sources to Find Operating Points Not Recommended
You can impose an operating specification on part of a Simscape model by
inserting source blocks from the Simscape Foundation Library. These impose
specified values of system variables in parts of the model. You can simulate
and save the state vector.

However, you cannot obtain an operating point for the original system
(without the source blocks) by saving the state values from the model and
then removing the source blocks. In general, the number, order, and identity
of state components change after adding and removing Simscape blocks in
a model.

Simulink trim Function Not Supported with Simscape Models
The Simulink trim function is not supported for models containing Simscape
components.

2-27

http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/

2 Simulating Physical Models

Linearizing at an Operating Point

In this section...

“What Is Linearization?” on page 2-28

“How to Linearize a Model” on page 2-30

“Linearizing a Model with Simscape, Simulink, and Related Products” on
page 2-30

“References” on page 2-34

What Is Linearization?
Determining the response of a system to small perturbations at an operating
point is a critical step in system and controller design. Once you find an
operating point, you can linearize the model about that operating point to
explore the response and stability of the system. To find an operating point in
a Simscape model, see “Finding an Operating Point” on page 2-22.

Choosing a Good Operating Point for Linearization
Although steady-state and other operating points (state x0 and inputs u0)
might exist for your model, that is no guarantee that such operating points are
suitable for linearization. The critical question is: how good is the linearized
approximation compared to the exact system dynamics?

• When perturbed slightly, a problematic operating point might exhibit
strong asymmetries, with strongly nonlinear behavior when perturbed in
certain ways and smoother behavior in other ways.

• Small perturbations might change discrete states in a large, discontinuous
way that violates the linear approximation.

Operating points with a strongly nonlinear or discontinuous character are not
suitable for linearization. You should analyze them in full simulation and
perturb the system by varying its inputs, parameters, and initial conditions.

2-28

Linearizing at an Operating Point

Tip A reliable way to check for such an unsuitable operating point is to
linearize at several nearby operating points. If the results differ greatly, the
operating point is strongly nonlinear.

What Is Linear Response?
Near an operating point, you can express the system state x, inputs u, and
outputs y relative to that operating point in terms of x – x0, u – u0, and y –
y0. For convenience, shift the vectors by subtracting the operating point:
x – x0 → x, etc.

If the system dynamics does not explicitly depend on time and the operating
point is a steady state, the system response to state and input perturbations
near the steady state is approximately governed by a linear time-invariant
(LTI) state space model:

dx/dt = A·x + B·u

y = C·x + D·u.

The matrices A, B, C, D have components and structures that are independent
of the simulation time. A system is stable to changes in state at an operating
point if the eigenvalues of A are negative.

If the operating point is not a steady state or the system dynamics depends
explicitly on time, the linearized dynamics near the operating point is more
complicated. The matrices A, B, C, D are not constant and depend on the
simulation time t0 , as well as the operating point x0 and u0 [1].

Tip While you can linearize a closed system with no inputs or outputs and
obtain a nonzero A matrix, obtaining a nontrivial linearized input-output
model requires at least one input component in u and one output component
in y.

2-29

2 Simulating Physical Models

Example
A pilot is flying, or simulating, an aircraft in level, constant-velocity, and
constant-altitude flight relative to the ground, with a known environment. A
crucial question for the aircraft pilot and designers is: will the aircraft return
to the steady state if perturbed from it by a disturbance, such as a wind
gust — in other words, is this steady state stable? If the operating point is
unstable, the aircraft trajectory can diverge from the steady state, requiring
human or automatic intervention to maintain steady flight.

How to Linearize a Model
Once you know an operating point, you have three practical methods for
investigating the system response to small disturbances.

Full Simulation- or Operation-Based Perturbations
You can experiment with the system or a system simulation by making
repeated, different, and slight changes to the system parameters, inputs,
and initial conditions, while operating at a steady state. This method
requires costly trial and error and generates uncontrolled and imprecise
approximations.

Analytic Approximations to Known State Dynamics
If you know the system state dynamics and an operating point x0 and u0 in
analytic form, you can apply standard approximation techniques to derive an
analytic form for the A, B, C, D matrices.

Numerical Approximations to Known State Dynamics
If you have a controlled numerical approximation to your system state
dynamics and operating point, you can apply standard computational
techniques to generate numerical approximations to the A, B, C, D matrices.

Linearizing a Model with Simscape, Simulink, and
Related Products
Use the following methods to create numerical linearized state-space models
from a model containing Simscape components.

2-30

Linearizing at an Operating Point

Independent Versus Dependent States
An important difference from normal Simulink models is that the states in a
physical network are not independent in general, because some states have
dependencies on other states through constraints.

• The independent states are a subset of system variables and consist of
Simscape dynamic variables and Simulink states.

• The dependent states consist of Simscape algebraic variables and
dependent (constrained) dynamic variables.

For more information on Simscape dynamic and algebraic variables, see “How
Simscape Simulation Works” on page 2-2.

The only components of the A, B, C, D matrices that can be nonzero are those
corresponding to independent states.

• The A matrix, of size n_states by n_states, is all zeros except for
a submatrix of size n_ind by n_ind, where n_ind is the number of
independent states.

• The B matrix, of size n_states by n_inputs, is all zeros except for a
submatrix of size n_ind by n_inputs.

• The C matrix, of size n_outputs by n_states, is all zeros except for a
submatrix of size n_outputs by n_ind.

• The D matrix, of size n_outputs by n_inputs, can be nonzeros everywhere.

Obtaining the Independent Subset of States. A complete linearized
solution uses only an independent subset of the system states. From the
matrices A, B, C, D, you can obtain a minimal input-output linearized model
with the minreal and sminreal functions from Control System Toolbox
software.

Linearizing with the Simulink linmod and dlinmod Functions
The Simulink functions linmod and dlinmod provide a way of linearizing
a Simscape model. There are several ways that you can use linmod and
dlinmod, and the linearization results differ depending on the method chosen.
To use these functions, you do not have to open the model, just have the model
file on your MATLAB path.

2-31

http://www.mathworks.com/access/helpdesk/help/toolbox/control/

2 Simulating Physical Models

For more information about Simulink linearization, see “Linearizing Models”
in the Simulink documentation.

Note If your model has continuous states, use linmod. (Continuous states
are the Simscape default.) If your model has mixed continuous and discrete
states, or purely discrete states, use dlinmod.

Linearizing a model with the local solver enabled (in the Solver Configuration
block) is not supported.

Linearizing with Default State and Input. You can call linmod without
specifying state or input. Enter linmod('modelname') at the command line.

With this form of linmod, Simulink linearization solves for consistent initial
conditions in the same way it does on the first step of any simulation. In
particular, any initial conditions, such as initial offset from equilibrium for a
spring, are set as if the simulation were starting from the initial time.

linmod allows you to change the time of externally specified signals (but not
the internal system dynamics) from the default. For this and more details, see
the function reference page.

Linearizing with the Steady-State Solver at an Initial Steady State.
If you have previously used the Simscape steady-state solver to find an
operating point, you can linearize at that operating point:

1 Open one or more Solver Configuration blocks in your model.

2 Select the Start simulation from steady state check box for the physical
networks that you want to linearize.

3 Close the Solver Configuration dialog boxes and save the modified model.

4 Enter linmod('modelname') at the command line.

linmod linearizes at the first step of simulation. In this case, the initial state
is also an operating point, a steady state.

2-32

Linearizing at an Operating Point

For more about setting up the steady-state solver, see the Solver Configuration
block reference page. For more details on its use, see “Using the Simscape
Steady-State Solver” on page 2-25.

Linearizing with Specified State and Input — Ensuring Consistency
of States. You can call linmod and specify state and input. Enter
linmod('modelname',x0,u0) at the command line. The extra arguments
specify, respectively, the steady state x0 and inputs u0 for linearizing
the simulation. When you specify a state to linmod, ensure that it is
self-consistent, within solver tolerance.

With this form of linmod, Simulink linearization does not solve for initial
conditions. Because not all states in the model have to be independent, it is
possible, though erroneous, to provide linmod with an inconsistent state to
linearize about.

If you specify a state that is not self-consistent (within solver tolerance), the
Simscape solver issues a warning at the command line when you attempt
linearization. The Simscape solver then attempts to make the specified x0
consistent by changing some of its components, possibly by large amounts.

Tip You most easily ensure a self-consistent state by taking the state from
some simulated time. For example, by selecting the States check box on the
Data Import/Export pane of the model Configuration Parameters dialog
box, you can capture a time series of state values in a simulation run.

Linearizing with Simulink Linearization Blocks
You can generate linearized state-space models from your Simscape model by
adding a Timed-Based Linearization or Trigger-Based Linearization block to
the model and simulating. These blocks combine time-based simulation up to
specified times or internal trigger points, with state-based linearization at
those times or trigger points.

For complete details about these blocks, see their respective block reference
pages.

2-33

2 Simulating Physical Models

Linearizing with Simulink Control Design Software

Note The techniques described in this section require the Simulink Control
Design product. You must use the features of this product on the Simulink
lines in your model, not directly on Simscape physical network lines or blocks.

The following methods require that you start with an operating point object
saved from trimming the model to an operating specification, as explained in
“Using Simulink® Control Design Techniques” on page 2-26.

To linearize a model with an operating point object, use the linearize
function, customizing where necessary. The resulting state-space object
contains the matrices A, B, C, D.

Additional Simulink Control Design Methods. Instead of the command
line interface, you can use the associated graphical user interface, through
the model menu bar: Tools > Control Design > Linear Analysis. For more
details on linearization, operating points and state-space objects, related
functions, and the graphical interface, see the Simulink Control Design
documentation.

References

[1] Brogan, W. L., Modern Control Theory, 2nd Ed., Englewood Cliffs, New
Jersey, Prentice-Hall, 1985.

[2] The MathWorks, Control System Toolbox User Guide,
www.mathworks.com/access/helpdesk/help/toolbox/control/.

2-34

http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/
http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/
http://www.mathworks.com/access/helpdesk/help/toolbox/control/

Generating Code

Generating Code

In this section...

“About Code Generation from Simscape Models” on page 2-35

“Related Simulink Code Generation Documentation” on page 2-35

“Reasons for Generating Code” on page 2-36

“Using Code-Related Products and Features” on page 2-36

“How Simscape Code Generation Differs from Simulink” on page 2-37

About Code Generation from Simscape Models
You can use Real-Time Workshop® software to generate stand-alone C code
from your Physical Networks models and enhance simulation speed and
portability. Certain features of Simulink software also make use of generated
or external code. This section explains code-related tasks you can perform
with your Simscape models.

Code versions of Simscape models typically require fixed-step Simulink
solvers, which are discussed in the Simulink documentation. Some features of
Simscape software are restricted when you translate a model into code. See
“How Simscape Code Generation Differs from Simulink” on page 2-37, as
well as “Limitations” on page 2-39.

Note Code generated from Simscape models is intended for rapid prototyping
and hardware-in-the-loop applications. It is not intended for use as production
code in embedded controller applications.

Add-on products based on the Simscape platform also support code generation,
with some variations and exceptions described in their respective User’s
Guides. Consult those User’s Guides for more information.

Related Simulink Code Generation Documentation
Consult Simulink Acceleration modes, Real-Time Workshop, and xPC
Target™ documentation for general information on code generation.

2-35

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/xpctarget/

2 Simulating Physical Models

Reasons for Generating Code
Code generation has many purposes and methods. There are two essential
rationales:

• Compiled code versions of Simulink and Simscape models run faster than
the original block diagram models. The time savings can be dramatic.

• An equally important consideration for Simscape models is the stand-alone
implementation of generated and compiled code. Once you convert part
or all of your model to code, you can deploy the stand-alone executable
program on virtually any platform, independently of MATLAB application.

Converting a model or subsystem to code also hides the original model or
subsystem.

Using Code-Related Products and Features
With Simulink, Real-Time Workshop, and xPC Target software, using several
code-related technologies, you can link existing code to your models and
generate code versions of your models.

Code-Related Task Component or Feature

Link existing code written in C
or other supported languages to
Simulink models

Simulink S-functions to generate
customized blocks

Speed up Simulink simulations Accelerator mode
Rapid Accelerator mode

Generate stand-alone fixed-step
code from Simulink models

Real-Time Workshop software

Generate stand-alone
variable-step code from Simulink
models

Real-Time Workshop Rapid Simulation
Target (RSim)

Convert Simulink model to code
and compile and run it on a target
PC

Real-Time Workshop and xPC Target
software

2-36

Generating Code

How Simscape Code Generation Differs from
Simulink
In general, using the code generated from Simscape models is similar to using
code generated from regular Simulink models. However, there are certain
differences.

Simscape and Simulink Code Are Generated Separately
Real-Time Workshop software generates code from the Simscape blocks
separately from the Simulink blocks in your model. The generated Simscape
code does not pass through model.rtw or the Target Language Compiler. All
the code generated from a single model resides in the same directory, however.

Compiler Support and Precompiled Libraries
Simscape software and its add-on products provide static runtime libraries
precompiled for compilers supported by Real-Time Workshop software. These
are the standard UNIX compilers for UNIX operating systems, LCC and
Microsoft® Visual Studio® for 32-bit Windows®, and Microsoft Visual Studio
for 64-bit Windows.

For all other compilers, the static runtime libraries needed by code generated
from Simscape models are compiled once per model during the code generation
build process.

Simscape Code Reuse Is Not Supported
Reusable subsystems in Simulink reuse code that is generated once from the
subsystem. You cannot generate reusable code from subsystems containing
Simscape blocks.

Tunable Parameters Are Not Supported
A tunable parameter is a Simulink run-time parameter that you can change
while the simulation is running. Simscape blocks do not support tunable
parameters in either simulations or generated code.

2-37

2 Simulating Physical Models

Simscape Run-Time Parameter Inlining Ignores Global
Exceptions
If you choose to enable parameter inlining for code generated from a Simscape
model, the software inlines all its run-time parameters. If you choose to make
some of the global Simscape block parameters exceptions to inlining, the
exceptions are ignored. You can change global tunable parameters only by
regenerating code from the model.

2-38

Limitations

Limitations

In this section...

“Sample Time and Solver Restrictions” on page 2-39

“Algebraic Loops” on page 2-39

“Restricted Simulink Tools” on page 2-40

“Unsupported Simulink Tools” on page 2-42

“Simulink Tools Not Compatible with Simscape Blocks” on page 2-42

“Code Generation” on page 2-42

Sample Time and Solver Restrictions
The default sample times of Simscape blocks are continuous. You cannot
simulate Simscape blocks with discrete solvers using the default sample times.

If you switch to a local solver in the Solver Configuration block, the associated
states become discrete. If there are no continuous Simulink or Simscape
states elsewhere in the model, you should use a discrete solver to simulate
such a model.

You cannot override the sample time of a nonvirtual subsystem containing
Simscape blocks.

Algebraic Loops
A Simscape physical network should not exist within a Simulink algebraic
loop. This means that you should not directly connect an output of a
PS-Simulink Converter block to an input of a Simulink-PS Converter block of
the same physical network.

For example, the following model contains a direct feedthrough between
the PS-Simulink Converter block and the Simulink-PS Converter block
(highlighted in magenta). To avoid the algebraic loop, you can insert a
Transfer Function block anywhere along the highlighted loop.

2-39

2 Simulating Physical Models

A better way to avoid an algebraic loop without introducing additional
dynamics is shown in the modified model below.

Restricted Simulink Tools
Certain Simulink tools are restricted for use with Simscape software:

• You can use the Simulink set_param and get_param commands to set or
get Simscape block parameters. The MathWorks does not recommend that
you use these commands for this purpose.

If you make changes to block parameters at the command line, run your
model first before saving it. Otherwise, you might save invalid block
parameters. Any block parameter changes that you make with set_param
are not validated unless you run the model.

2-40

Limitations

• Enabled subsystems can contain Simscape blocks. Always set the States
when enabling parameter in the Enable dialog to held for the subsystem’s
Enable port.

Setting States when enabling to reset is not supported and can lead
to fatal simulation errors.

• You can place Simscape blocks within nonvirtual subsystems that support
continuous states. Nonvirtual subsystems that support continuous states
include Enabled subsystems and Atomic subsystems. However, physical
connections and physical signals must not cross nonvirtual boundaries.
When placing Simscape blocks in a nonvirtual subsystem, make sure
to place all blocks belonging to a given Physical Network in the same
nonvirtual subsystem.

• Simulink configurable subsystems work with Simscape blocks only if all of
the block choices have consistent port signatures.

• For Iterator, Function-Call, Triggered, and While Iterator nonvirtual
subsystems cannot contain Simscape blocks.

• An atomic subsystem with a user-specified (noninherited) sample time
cannot contain Simscape blocks.

• You can use the Simulink Save As command only to rename Simscape
models within the current version. Saving in a previous version format is
not supported for models containing Simscape blocks.

• Linearization with the Simulink linmod function or with equivalent
Simulink Control Design functions and graphical interfaces is not
supported with Simscape models if you use local solvers.

• Model referencing is supported, with some restrictions:

- All Physical connection lines must be contained within the referenced
model. Such lines cannot cross the boundary of the referenced model
subsystem in the referencing model.

- The referencing model and the referenced model must use the same
solver.

For further information, consult the Simulink documentation on
referencing models.

2-41

2 Simulating Physical Models

Unsupported Simulink Tools
Certain Simulink tools and features do not work with Simscape software:

• The Simulink Profiler tool does not work with Simscape models.

• Physical signals and physical connection lines between conserving ports are
different from Simulink signals. Therefore, the Signal and Scope Manager
tool and the signal label functionality are not supported.

Simulink Tools Not Compatible with Simscape Blocks
Some Simulink tools and features do not work with Simscape blocks:

• Execution order tags do not appear on Simscape blocks.

• Simscape blocks do not invoke user-defined callbacks.

• You cannot set breakpoints on Simscape blocks.

• Reusable subsystems cannot contain Simscape blocks.

• You cannot use the Simulink Fixed-Point Tool with Simscape blocks.

• The Report Generator reports Simscape block properties incompletely.

Code Generation
Code generation is supported for Simscape physical modeling software and its
family of add-on products. However, there are restrictions on code generated
from Simscape models.

• Code reuse is not supported.

• C++ code generation is not supported.

• Tunable parameters are not supported.

• Run-time parameter inlining ignores global exceptions.

• Simulation of Simscape models on fixed-point processors is not supported.

• Block diagnostics in error messages are not supported. This means that
if you get an error message from simulating generated code, it does not
contain a list of blocks involved.

• Conversion of models or subsystems containing Simscape blocks to
S-functions is not supported.

2-42

Limitations

• Simulation-in-the-loop (SIL) is not supported.

• Code generation respects the Linear Algebra setting in the Solver
Configuration block, but only when you choose the local solver option.
Otherwise, code generation uses full linear algebra.

“Generating Code” on page 2-35 describes Simscape code generation features.
“Restricted Simulink Tools” on page 2-40 describes limitations on model
referencing.

There are variations and exceptions as well in the code generation features of
the add-on products based on Simscape platform. For details, see the User’s
Guides for individual add-on products.

Code Generation and Fixed-Step Solvers
Most code generation options for Simscape models require the use of fixed-step
Simulink solvers. This table summarizes the available solver choices,
depending on how you generate code.

Code Generation Option Solver Choices

Accelerator mode
Rapid Accelerator mode

Variable-step or fixed-step

Real-Time Workshop software: RSim
Target*

Variable-step or fixed-step

Real-Time Workshop software: Targets
other than RSim

Fixed-step only

* For the RSim Target, Simscape software supports only the Simulink
solver module. In the model Configuration Parameters dialog box, see the
Real-Time Workshop: RSim Target: Solver selection menu. The default
is automatic selection, which might fail to choose the Simulink solver module.

2-43

2 Simulating Physical Models

2-44

3

Logging Simulation Data

• “About Simulation Data Logging” on page 3-2

• “How to Log Simulation Data” on page 3-3

• “Data Logging Example” on page 3-6

3 Logging Simulation Data

About Simulation Data Logging

In this section...

“Suggested Workflows” on page 3-2

“Limitations” on page 3-2

Suggested Workflows
You can log simulation data to the workspace for debugging and verification.
Data logging lets you analyze how internal block variables change with time
during simulation. For example, you may want to see that the pressure in a
hydraulic cylinder is above some minimum value, or compare it against the
pump pressure. If you log simulation data to the workspace, you can later
query, plot, and analyze it without rerunning the simulation.

Simulation data logging can also replace connecting sensors and scopes to
track simulation data. These blocks increase the model complexity and slow
down simulation. The “Data Logging Example” on page 3-6 shows how you
can log and plot simulation data instead of adding sensors to your model. It
also shows how you can print the complete logging tree for a model, and plot
simulation results for a selected variable.

For additional information, see the reference pages for the classes
simscape.logging.Node, simscape.logging.Series, and their associated
methods.

Limitations
Simulation data logging is not supported for:

• Model reference

• Generated code

• Accelerator mode

• Rapid Accelerator mode

3-2

How to Log Simulation Data

How to Log Simulation Data

In this section...

“How to Enable Data Logging” on page 3-3

“Data Logging Options” on page 3-4

How to Enable Data Logging
By default, simulation data is not logged. To turn on the data logging for a
model, use the Log simulation data configuration parameter.

1 In the model window, from the top menu bar, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the Configuration Parameters dialog box, on the left pane, select
Simscape. The right pane displays the Log simulation data option,
which is set to none, by default.

3 From the drop-down list, select all, then click OK.

3-3

3 Logging Simulation Data

4 Simulate the model. This creates a workspace variable named simlog (as
specified by the Workspace variable name parameter), which contains
the simulation data.

For information on how to access and use the data stored in this variable, see
“Data Logging Example” on page 3-6.

Data Logging Options
When you set the Log simulation data configuration parameter to all,
other options in the Data Logging group box become available.

• Workspace variable name — Specifies the name of the workspace
variable that stores the simulation data. Subsequent simulations overwrite
the data in the simulation log variable. If you want to compare data from

3-4

How to Log Simulation Data

two models or two simulation runs, use different names for the respective
log variables. The default variable name is simlog.

• Limit data points — Saving data to the workspace can slow down the
simulation and consume memory. Use this checkbox in conjunction with
the Data history (last N steps) parameter to limit the number of data
points saved. The checkbox is selected by default. If you clear it, the
simulation log variable contains the data points for the whole simulation,
at the price of slower simulation speed and heavier memory consumption.

• Data history (last N steps)— Specify the number of simulation steps to
limit the number of data points output to the workspace. The simulation
log variable contains the data points corresponding to the last N steps of the
simulation, where N is the value that you specify for theData history (last
N steps) parameter. You have to select the Limit data points checkbox
to make this parameter available. The default value logs simulation data
for the last 5000 steps. You can specify any other positive integer number.
If the simulation contains fewer steps than the number specified, the
simulation log variable contains the data points for the whole simulation.

After changing your data logging preferences, rerun the simulation to
generate a new data log.

3-5

3 Logging Simulation Data

Data Logging Example
The model shown represents a permanent magnet DC motor.

This model is very similar to the Permanent Magnet DC Motor demo, but,
unlike the demo model, it does not include the Ideal Rotational Motion
Sensor and the Current Sensor blocks, along with the respective PS-Simulink
Converter blocks and scopes. For a detailed description of the Permanent
Magnet DC Motor demo, see “Working with a Simscape Demo Model” in the
Simscape Getting Started Guide.

This example shows how you can log and plot simulation data instead of
adding sensors to your model.

1 Build the model, as shown in the preceding illustration.

2 To enable data logging, open the Configuration Parameters dialog box,
in the left pane, select Simscape, then set the Log simulation data
parameter to all and click OK.

3-6

Data Logging Example

3 Simulate the model. This creates a workspace variable named simlog (as
specified by the Workspace variable name parameter), which contains
the simulation data.

4 The simlog variable has the same hierarchy as the model. To see the whole
variable structure, at the command prompt, type:

simlog.print

This command prints the whole data tree.

dc_motor1
+-Electrical_Reference2
| +-V
| | +-v
| +-i

3-7

3 Logging Simulation Data

+-Friction_Mr
| +-C
| | +-w
| +-R
| | +-w
| +-t
| +-w
+-L
| +-i
| +-i_L
| +-n
| | +-v
| +-p
| | +-v
| +-v
+-Load_Torque
| +-C
| | +-w
| +-R
| | +-w
| +-S
| +-t
| +-w
+-Mechanical_Rotational_Reference
| +-W
| | +-w
| +-t
+-Mechanical_Rotational_Reference1
| +-W
| | +-w
| +-t
+-Motor_Inertia_J
| +-I
| | +-w
| +-t
+-Rotational_Electromechanical_Converter
| +-C
| | +-w
| +-R
| | +-w

3-8

Data Logging Example

| +-i
| +-n
| | +-v
| +-p
| | +-v
| +-t
| +-v
| +-w
+-Rotor_Resistance_R
| +-i
| +-n
| | +-v
| +-p
| | +-v
| +-v
+-Simulink_PS_Converter
+-x1_5V

+-i
+-n
| +-v
+-p
| +-v
+-v

5 Every node that represents an Across, Through, or internal block variable
contains series data. To get to the series, you have to specify the complete
path to it through the tree, starting with the top-level variable name. For
example, to get a handle on the series representing the angular velocity of
the motor, type:

s1 = simlog.Rotational_Electromechanical_Converter.R.w.series;

6 To see how the motor speed changes with time, type:

plot(s1.time, s1.values)

This plots the motor speed in default units (radian/s).

3-9

3 Logging Simulation Data

7 To get a plot in revolutions per minute, type:

plot(s1.time, s1.values('rpm'))

3-10

Data Logging Example

8 Compare this figure to the RPM scope display in the Permanent Magnet
DC Motor demo. The results are exactly the same.

9 To plot the current through the motor, type:

s2 = simlog.Rotational_Electromechanical_Converter.i.series;
plot(s2.time, s2.values)

3-11

3 Logging Simulation Data

10 Compare the resulting figure with the Motor Current scope display in the
demo.

3-12

4

Working with Physical
Units

• “Overview” on page 4-2

• “Unit Definitions” on page 4-4

• “Specifying Units in Block Dialogs” on page 4-9

• “Thermal Unit Conversions” on page 4-11

• “Angular Units” on page 4-14

4 Working with Physical Units

Overview
Unlike Simulink signals, which are essentially unitless, physical signals
can have units associated with them. You specify the units along with the
parameter values in the block dialogs, and Simscape unit manager performs
the necessary unit conversion operations when solving a physical network.
Simscape blocks support standard measurement systems. The default block
units are meter-kilogram-second or MKS (SI).

Simscape software comes with a library of standard units, and you can define
additional units as needed (see “Unit Definitions” on page 4-4). You can use
these units in your block diagrams:

• To specify the units of an input physical signal, type a unit name, or a
mathematical expression with unit names, in the Input signal unit field
of the Simulink-PS Converter block dialog. You can also select a unit
from a drop-down list, which is prepopulated with some common input
units. Signal units that you specify in a Simulink-PS Converter block must
match the input type expected by the Simscape block connected to it. For
example, when you provide the input signal for an Ideal Angular Velocity
Source block, specify angular velocity units, such as rad/s or rpm, in the
Simulink-PS Converter block, or leave it unitless. If you leave the block
unitless, with the Input signal unit parameter set to 1, then the physical
signal units are inferred from the destination block.

• Simscape block dialogs have drop-down combo boxes of units next to a
parameter value, letting you either select a unit from the drop-down list, or
type a unit name (or a mathematical expression with unit names) directly
into the box. These drop-down lists are automatically populated by those
units that are commensurate with the unit of the parameter, based on the
current list of unit definitions. For example, if a parameter is specified, by
default, with the units of meters per second, m/s, the drop-down list of units
contains commensurate units, such as mm/s, in/s, fps (feet per second),
fpm (feet per minute), and so on, including any other linear velocity units
currently defined in your unit registry.

• To specify the units of an output physical signal, type a unit name, or a
mathematical expression with unit names, in the Output signal unit
field of the PS-Simulink Converter block dialog. You can also select a unit
from a drop-down list, which is prepopulated with some common output
units. The system compares the units you specified with the actual units

4-2

Overview

of the input physical signal coming into the converter block and applies a
gain equal to the conversion factor before outputting the Simulink signal.
The default value is 1, which means that the unit is not specified. If you
do not specify a unit, or if the unit matches the actual units of the input
physical signal, no gain is applied.

For more information, see “Specifying Units in Block Dialogs” on page 4-9.

4-3

4 Working with Physical Units

Unit Definitions
Simscape unit names are defined in the pm_units.m file, which is
shipped with the product. You can open this file to see how the
physical units are defined in the product, and also as an example
when adding your own units. This file is located in the directory
matlabroot\toolbox\physmod\unit_manager\unit_manager.

Default registered units and their abbreviations are listed in the following
table. Use the pm_getunits command to get an up-to-date list of units
currently defined in your unit registry. Use the pm_adddimension and
pm_addunit commands to define additional units.

Physical Unit Abbreviations Defined by Default in the Simscape Unit
Registry

Quantity Abbreviation Unit

Amount of substance mol Mole

Angle rad

deg

rev

Radian

Degree

Revolution

Angular velocity rpm

Hz

Revolutions/minute

Revolutions/second

Capacitance F

pF

nF

uF

Farad

Picofarad

Nanofarad

Microfarad

Charge c Coulomb

Conductance S

nS

uS

mS

Siemens

Nanosiemens

Microsiemens

Millisiemens

4-4

Unit Definitions

Physical Unit Abbreviations Defined by Default in the Simscape Unit
Registry (Continued)

Quantity Abbreviation Unit

Current A

pA

nA

uA

mA

kA

Ampere

Picoampere

Nanoampere

Microampere

Milliampere

Kiloampere

Energy J

Btu

eV

Joule

British thermal unit

Electronvolt

Flow rate lpm

gpm

Liter/minute

Gallon/minute

Force N

dyn

lbf

mN

Newton

Dyne

Pound-force

Millinewton

Inductance H

uH

mH

Henry

Microhenry

Millihenry

4-5

4 Working with Physical Units

Physical Unit Abbreviations Defined by Default in the Simscape Unit
Registry (Continued)

Quantity Abbreviation Unit

Length m

cm

mm

km

um

in

ft

mi

yd

Meter

Centimeter

Millimeter

Kilometer

Micrometer

Inch

Foot

Mile

Yard

Magnetic flux Wb Weber

Magnetic flux density T

G

Tesla

Gauss

Mass kg

g

mg

lbm

oz

slug

Kilogram

Gram

Milligram

Pound mass

Ounce

Slug

Pressure Pa

bar

atm

psi

Pascal

Bar

Atmosphere

Pound/inch^2

Power W

HP

Watt

Horsepower

4-6

Unit Definitions

Physical Unit Abbreviations Defined by Default in the Simscape Unit
Registry (Continued)

Quantity Abbreviation Unit

Resistance Ohm

kOhm

MOhm

GOhm

Ohm

Kiloohm

Megaohm

Gigaohm

Temperature K

C

Fh

R

Kelvin

Celsius

Fahrenheit

Rankine

Time s

min

hr

ms

us

ns

Second

Minute

Hour

Millisecond

Microsecond

Nanosecond

Velocity mph

fpm

fps

Miles/hour

Feet/minute

Feet/second

Viscosity absolute Poise

cP

reyn

Poise

Centipoise

Reyn

Viscosity kinematic St

cSt

Newt

Stokes

Centistokes

Newt

4-7

4 Working with Physical Units

Physical Unit Abbreviations Defined by Default in the Simscape Unit
Registry (Continued)

Quantity Abbreviation Unit

Volume l

gal

Liter

Gallon

Voltage V

mV

kV

Volt

Millivolt

Kilovolt

Note This table lists the unit abbreviations defined in the product. See
the following section, “Specifying Units in Block Dialogs” on page 4-9,
for information on how to use the abbreviations above, or mathematical
expressions with these abbreviations, to specify units for the parameter
values in the block dialogs.

4-8

Specifying Units in Block Dialogs

Specifying Units in Block Dialogs
Simscape block dialogs have drop-down combo boxes for units next to a
parameter value. For example, in the Constant Volume Chamber block,
the drop-down list for the Chamber volume parameter contains l, gal,
in^3, ft^3, mm^3, cm^3, m^3, and km^3, and the drop-down list for the Initial
pressure parameter contains Pa, bar, psi, and atm.

You can either select a unit from the drop-down list, or type a commensurate
unit name (or a mathematical expression with unit names) directly into the
unit combo box of the block dialog. You can use the abbreviations for the
units defined in your registry, or any valid mathematical expressions with
these abbreviations. For example, you can specify torque in newton-meters
(N*m) or pound-feet (lbf*ft). To specify velocity, you can use one of the
defined unit abbreviations (mph, fpm, fps), or an expression based on any
combination of the defined units of length and time, such as meters/second
(m/s), millimeters/second (mm/s), inches/minute (in/min), and so on.

Note Affine units (such as Celsius or Fahrenheit) are not allowed in unit
expressions. For more information, see “About Affine Units” on page 4-11.

The following operators are supported in the unit mathematical expressions:

* Multiplication

/ Division

^ Power

+, - Plus, minus — for exponents only

() Brackets to specify evaluation order

Metric unit prefixes, such as kilo, milli, or micro, are not supported. For
example, if you want to use milliliter as a unit of volume, you have to add
it to the unit registry:

pm_addunit('ml', 0.001, 'l');

4-9

4 Working with Physical Units

The drop-down lists next to parameter names are automatically populated
by those units that are commensurate with the unit of the parameter. If you
specify the units by typing, it is your responsibility to enter units that are
commensurate with the unit of the parameter. The unit manager performs
error checking when you click Apply or OK in the block dialog box, and issues
an error if you type an incorrect unit.

In the Simulink-PS Converter and the PS-Simulink Converter block dialogs,
the drop-down lists are prepopulated with some common input and output
units, and it is your responsibility to select or type a unit expression
commensurate with the expected input or output units. The error checking
for the converter blocks is performed at the time of simulation. See “Model
Validation” on page 2-4 for details.

Note Currently, physical units are not propagated through the blocks in the
Physical Signals library, such as PS Add, PS Gain, and so on.

4-10

Thermal Unit Conversions

Thermal Unit Conversions

In this section...

“About Affine Units” on page 4-11

“When to Apply Affine Conversion” on page 4-11

“How to Apply Affine Conversion” on page 4-12

About Affine Units
Thermal units often require an affine conversion, that is, a conversion that
performs both multiplication and addition. To convert from the old value Told
to the new value Tnew, we need a linear conversion coefficient L and an offset O:

Tnew = L * Told + O

For example, to convert a temperature reading from degrees Celsius into
degrees Fahrenheit, the linear term equals 9/5, and the offset equals 32:

TFahr = 9 / 5 * TCels + 32

Simscape unit manager defines kelvin (K) as the fundamental temperature
unit. This makes Celsius (C) and Fahrenheit (Fh) affine units because they
are both related to kelvin with an affine conversion. Rankine (R) is defined in
terms of kelvin with a zero linear offset and, therefore, is not an affine unit.

The following are the default Simscape unit registry definitions for
temperature units:

pm_adddimension('temperature', 'K'); % defines kelvin as fundamental temperature unit

pm_addunit('C', [1 273.15], 'K'); % defines Celsius in terms of kelvin

pm_addunit('Fh', [5/9 -32*5/9], 'C'); % defines Fahrenheit in terms of Celsius

pm_addunit('R', [5/9 0], 'K'); % defines rankine in terms of kelvin

When to Apply Affine Conversion
In dealing with affine units, sometimes you need to convert them using just
the linear term. Usually, this happens when the value you convert represents
relative, rather than absolute, temperature, ΔT = T1 – T2.

4-11

4 Working with Physical Units

ΔTnew = L * ΔTold

In this case, adding the affine offset would yield incorrect conversion results.

For example, the outdoor temperature rose by 18 degrees Fahrenheit, and
you need to input this value into your model. When converting this value into
kelvin, use linear conversion

ΔTkelvin = 5 / 9 * ΔTFahr

and you get 10 K, that is, the outdoor temperature changed by 10 kelvin.
If you apply affine conversion, you will get a temperature change of
approximately 265 kelvin, which is incorrect.

This is even better illustrated if you use degrees Celsius for the input units
because the linear term for conversion between Celsius and kelvin is 1:

• If the outdoor temperature changed by 10 degrees Celsius (relative
temperature value), then it changed by 10 kelvin (do not apply affine
conversion).

• If the outdoor temperature is 10 degrees Celsius (absolute temperature
value), then it is 283 kelvin (apply affine conversion).

How to Apply Affine Conversion
When you specify affine units for an input temperature signal, it is important
to consider whether you need to apply affine conversion. Usually this decision
depends on whether the signal represents absolute or relative temperature
(see “When to Apply Affine Conversion” on page 4-11).

For example, you model a house-heating system, and you need to input the
outdoor temperature. In the following diagram, the Constant source block
represents the average outdoor temperature, in degrees Celsius, and the
Sine source block adds the daily temperature variation. The average outdoor
temperature, in this case, is 12 degrees Celsius. Daily variation with an
amplitude of 8 makes the input outdoor temperature vary between 4 and 20
degrees Celsius.

4-12

Thermal Unit Conversions

This signal is an absolute temperature reading. Therefore, when the signal
converts into kelvin for further computations, you need to specify that
it should use affine conversion. Double-click the Simulink-PS Converter
block, type C in the Input signal unit field, and select the Apply affine
conversion check box.

As a result, the Simulink-PS Converter block outputs a value varying between
277 K and 293 K.

4-13

4 Working with Physical Units

Angular Units
Simscape implementation of angular units relies on the concept of angular
units, specifically radians, being a unit but dimensionless. The notion of
angular units being dimensionless is widely held in the metrology community.
The fundamental angular unit, radian, is defined in the Simscape unit
registry as:

pm_addunit('rad', 1, 'm/m');

which corresponds to the SI and NIST definition [1]. In other words, Simscape
unit manager does not introduce a separate dimension, 'angle', with a
fundamental unit of 'rad' (similar to dimensions for length or mass), but
rather defines the fundamental angular unit in terms of meter over meter or,
in effect, 1.

The additional angular units, degree and revolution, are defined respectively
as:

pm_addunit('deg', pi/180, 'rad');
pm_addunit('rev', 2*pi, 'rad');

As a result, forward trigonometric functions, such as sin, cos, and tan, work
directly with arguments expressed in angular units. For example, cosinus of
90 degrees equals the cosinus of (pi/2) radians and equals the cosinus of (pi/2).
Expansion of forward trigonometric functions works in a similar manner.

Another effect of dimensionless implementation of angular units is the
convenience of the work-energy conversion. For example, torque (in N*m)
multiplied by angle (in rad) can be added directly to energy (in J, or N*m). If
you specify other commensurate units for the components of this equation,
Simscape unit manager performs the necessary unit conversion operations
and the result is the same.

References
[1] The NIST Reference on Constants, Units, and Uncertainty,
http://physics.nist.gov/cuu/Units/units.html

4-14

http://physics.nist.gov/cuu/Units/units.html

5

Using the Simscape Editing
Mode

• “About the Simscape Editing Mode” on page 5-2

• “Working with Restricted and Full Modes” on page 5-9

• “Editing Mode Information” on page 5-23

5 Using the Simscape™ Editing Mode

About the Simscape Editing Mode

In this section...

“Suggested Workflows” on page 5-2

“What You Can Do in Restricted Mode” on page 5-3

“What You Can Do in Full Mode” on page 5-4

“Switching Between Modes” on page 5-4

“Working with Block Libraries” on page 5-7

Suggested Workflows
The Simscape Editing Mode functionality is implemented for customers who
perform physical modeling and simulation using Simscape platform and
its add-on products: SimDriveline, SimElectronics®, SimHydraulics, and
SimMechanics. It allows you to open, simulate, and save models that contain
blocks from add-on products in Restricted mode, without checking out add-on
product licenses, as long as the products are installed on your machine. It
is intended to provide an economical way to distribute simulation models
throughout a team or organization.

Note Unless your organization uses concurrent licenses, see the Simscape
product page on the MathWorks Web site for specific information on how to
install add-on products on your machine, to be able to work in Restricted mode.

The Editing Mode functionality supports widespread use of Physical Modeling
products throughout an engineering organization by making it economical for
one user to develop a model and provide it to many other users.

Specifically, this feature allows a user, model developer, to build a model that
uses Simscape platform and one or more add-on products and share that
model with other users, model users. When building the model in Full mode,
the model developer must have a Simscape license and the add-on product
licenses for all the blocks in the model. For example, if a model combines
Simscape, SimHydraulics, and SimDriveline blocks, the model developer
needs to check out licenses for all three products to work with it in Full mode.

5-2

http://www.mathworks.com/products/simscape/editingmodes.html
http://www.mathworks.com/products/simscape/editingmodes.html

About the Simscape™ Editing Mode

Once the model is built, model users need only to check out a Simscape license
to simulate the model and fine-tune its parameters in Restricted mode. As
long as no structural changes are made to the model, model users can work in
Restricted mode and do not need to check out add-on product licenses.

Another workflow, available with concurrent licenses only, lets multiple users,
who all have Simscape licenses, share a small number of add-on product
licenses by working mostly in Restricted mode, and temporarily switching
models to Full mode only when they need to perform a specific design task
that requires being in Full mode.

Note The MathWorks recommends that you save all the models in Full mode
before upgrading to a new version of Simulink or Simscape software.

If you have saved a model in Restricted mode and, upon upgrading to a new
product version, open the model and it does not run, switch it to Full mode
and save. You can then again switch to Restricted mode and work without
problem.

What You Can Do in Restricted Mode
When your model is open in Restricted mode, you can:

• Simulate the model.

• Inspect parameters.

• Change certain block parameters. In general, you can change numerical
parameter values, but cannot change the block parameterization options.
See the block reference pages for specifics.

• Generate code.

• Make data logging or visualization changes.

• Add or delete regular Simulink blocks (such as sources or scopes) and
appropriate connections.

For other types of changes, listed in the following section, your model has to
be in Full mode. Some of these disallowed changes are impossible to make in
Restricted mode (for example, Restricted parameters are grayed out in block

5-3

5 Using the Simscape™ Editing Mode

dialog boxes). Other changes, like changing the physical topology of a model,
are not explicitly disallowed, but if you make these changes in Restricted
mode, the software will issue an error message when you try to run, compile,
or save such a model.

What You Can Do in Full Mode
You need to open a model in Full mode if you need to do any of the following:

• Add or delete Physical Modeling blocks (that is, Simscape blocks or blocks
from the add-on product libraries).

• Make or break Physical connections (between Conserving or Physical
Signal ports).

• Change the types of signals going into actuators or out of sensors (for
example, from velocity to torque).

• Change configuration parameters.

• Change block parameterization options and other restricted parameters.

• Change physical units of parameters.

Switching Between Modes
The following flow chart shows what happens when you switch between
modes.

5-4

About the Simscape™ Editing Mode

New models are always created in Full mode. You can then either save the
model in Full mode, or switch to Restricted mode and save the model in
Restricted mode.

5-5

5 Using the Simscape™ Editing Mode

When you load an existing model, the license manager checks whether it has
been saved in Full or Restricted mode.

• If the model has been saved in Restricted mode, it opens in Restricted mode.

• If the model has been saved in Full mode, the license manager checks
whether all the add-on product licenses for this model are available and, if
so, opens it in Full mode. If a add-on product license is not available, the
license manager issues an error message and opens the model in Restricted
mode. See also “Example with Multiple Add-On Products” on page 5-6.

Note You can set a Simulink preference to specify that the models are always
to open in Restricted mode, regardless of the way they have been saved.

When a model is open, you can transition it between Full and Restricted
modes at any time, in either direction:

• When you try to switch from Restricted to Full mode, the license manager
checks whether all the add-on product licenses for this model are available.
If a add-on product license is not available, the license manager issues an
error message and the model stays in Restricted mode. See also “Example
with Multiple Add-On Products” on page 5-6.

• No checks are performed when switching from Full to Restricted mode.

Note If a add-on product license has been checked out to open a model in Full
mode, it remains checked out for the remainder of the MATLAB session.
Switching to Restricted mode does not immediately return the license.

Example with Multiple Add-On Products
When you try to open a model in Full mode or to switch from Restricted to
Full mode, the license manager scans the model and attempts to check out
the required add-on product licenses as it encounters them in the model. If a
license is not available, the license manager issues an error message and the
model stays in Restricted mode. The licenses are checked out sequentially. As
a result, if a model uses blocks from multiple add-on products, some of the

5-6

About the Simscape™ Editing Mode

add-on product licenses may have already been checked out by the time the
license manager encounters an unavailable license. In this case, these add-on
product licenses stay checked out until you quit the MATLAB session, even
though the model is in Restricted mode.

For example, consider a model that uses blocks from SimHydraulics and
SimDriveline libraries, but the user who tries to open it has only the
SimDriveline license available. It may happen that the license manager
checks out a SimDriveline license first, and then tries to check out a
SimHydraulics license, which is not available. The license manager then
issues an error message and opens the model in Restricted mode, but the
SimDriveline license stays checked out until the end of the MATLAB session.

Working with Block Libraries
This section describes the specifics of working with block libraries while
using the Editing Mode functionality. These rules are applicable to any
physical modeling blocks, that is, blocks from all Simscape libraries, including
the add-on products. In general, you need to work in Full mode when you
modify a library block. However, when you open a model that references the
modified block, you may work in Restricted mode, under certain conditions.
The following summary details the Editing Mode rules for modifying and
using library blocks:

• To add physical modeling blocks to a library block, you need to work in
Full mode.

- If this library block had not previously contained physical modeling
blocks, you need to work in Full mode to load a preexisting model that
uses this library block or to drag this block to a model.

- If this library block had previously contained physical modeling blocks,
you can work in Restricted mode when loading a preexisting model that
uses this library block. However, you have to work in Full mode to drag
this block from the library to a model.

• To add external physical ports to a library block, you need to work in Full
mode.

- You can work in Restricted mode when loading a preexisting model that
uses this library block.

5-7

5 Using the Simscape™ Editing Mode

- However, to connect these additional ports, you need to work in Full
mode because you are changing the model topology.

• To delete external physical ports from a library block, you need to work in
Full mode. If these ports were connected in a model saved in Restricted
mode, loading the model causes the topology to change, so you need to
switch to Full mode to save or compile the model.

Resolving Block Library Links
All Simscape blocks in your models, including the add-on products’ blocks,
must have resolved block library links. You can neither disable nor break
these library links. This is a global requirement of Simscape platform, which
is necessary to enforce the Editing Mode rules for modifying and using library
blocks, listed above. A model with broken library links will neither compile
nor save. You must restore all the broken block library links for your model to
be valid.

If you want to customize certain blocks and use them in your models, you
must add these modified blocks to your own custom library, then copy the
block instances that you need to your model.

5-8

Working with Restricted and Full Modes

Working with Restricted and Full Modes

In this section...

“Setting the Model Loading Preference” on page 5-9

“Saving a Model in Restricted Mode” on page 5-10

“Working with a Model in Restricted Mode” on page 5-13

“Switching from Restricted to Full Mode” on page 5-21

Setting the Model Loading Preference
By default, when you load an existing model, the license manager checks
whether it has been saved in Full or Restricted mode and tries to open it in
this mode. However, you can set your preferences so that the models are
always open in Restricted mode, regardless of the way they have been saved.

1 From the MATLAB top menu bar, select File > Preferences. The
Preferences dialog box opens.

2 In the left pane of the Preferences dialog box, select Simscape. The right
pane displays the Editing Mode group box. By default, the Load models
using option is set to Editing mode specified in models.

3 Select Restricted mode always from the drop-down list, as shown, and
click OK.

5-9

5 Using the Simscape™ Editing Mode

Now, when you open a model, the license manager does not attempt to check
out add-on product licenses and always opens the model in Restricted mode.

Saving a Model in Restricted Mode
Rather that setting your preferences so that all the models always open in
Restricted mode, you can switch an individual model to Restricted mode
before saving it. Such a model will then, by default, open in Restricted mode.

1 From the top menu bar in the model window, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option, which is by
default set to Full.

3 Select Restricted from the drop-down list, as shown, and click OK.

5-10

Working with Restricted and Full Modes

4 Save the model.

Note The Simscape entry does not appear in the left pane of the
Configuration Parameters dialog box until you add at least one Physical
Modeling block to your model. If you create an additional configuration set for
a model, the Simscape entry does not appear in it until you either activate
it or perform a Physical Modeling operation, such as adding or deleting a
Physical Modeling block or connection, opening a Physical Modeling block
dialog box, and so on.

Once you have switched a model to Restricted mode, working with it follows
the rules described in “Working with a Model in Restricted Mode” on page

5-11

5 Using the Simscape™ Editing Mode

5-13. Note, however, that the add-on product licenses for this model stay
checked out until you quit the MATLAB session.

When you open a model that has been saved in Restricted mode, the license
manager opens it in Restricted mode and does not check out the add-on
product licenses.

Example of Saving a Model in Restricted Mode
In this example, you switch a model to Restricted mode and save it.

1 Open the Simple Mechanical System demo model
(ssc_simple_mechanical_system).

2 From the top menu bar in the model window, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

3 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option, which is
set to Full by default.

5-12

Working with Restricted and Full Modes

4 Select Restricted from the drop-down list and click OK.

5 Save the model as test_edit_mode.mdl.

Working with a Model in Restricted Mode
When you open a model in Restricted mode, you can perform a variety of
tasks: simulate the model, inspect and fine-tune block parameters, add
and delete basic Simulink blocks, and so on. For a complete list of allowed
operations, see “What You Can Do in Restricted Mode” on page 5-3.

When you open a block dialog box in Restricted mode, some of the block
parameters may be grayed out. These are the so-called restricted parameters
that can be modified only in Full mode. In general, you can change numerical
parameter values in Restricted mode, but you cannot change the block
parameterization options. See the block reference pages for specifics. Note
also that when a restricted parameter defines the block parameterization
schema, nonrestricted parameters available for fine-tuning in Restricted mode
depend on the value of this restricted parameter. For example, in a Constant
Volume Chamber block, the Chamber specification parameter is restricted.
If, at the time the model entered Restricted mode, this parameter was set
to By volume, then the nonrestricted parameters available for fine-tuning
would be Chamber volume, Specific heat ratio, and Initial pressure. If,
however, it was set to By length and diameter, you will have a different set
of parameters available in Restricted mode.

You cannot change physical units in Restricted mode. When you open a block
dialog box in Restricted mode, the drop-down lists of units next to a parameter
name and value are grayed out. When you open a PS-Simulink Converter or
Simulink-PS Converter block dialog box, the Unit parameter is grayed out.

The following examples illustrate operations allowed and disallowed in
Restricted mode:

• “Simulating and Fine-Tuning a Model in Restricted Mode” on page 5-14

• “Adding and Deleting Simulink Blocks in Restricted Mode” on page 5-17

• “Performing an Operation Disallowed in Restricted Mode” on page 5-19

5-13

5 Using the Simscape™ Editing Mode

Simulating and Fine-Tuning a Model in Restricted Mode
This example shows how you can work with a model in Restricted mode by
changing certain parameter values and observing the simulation results.

1 Open the test_edit_mode model, which you saved in Restricted mode in
“Example of Saving a Model in Restricted Mode” on page 5-12. The model
opens in Restricted mode.

2 Open the Joint C Position scope and simulate the model. The models runs
and simulates in Restricted mode.

5-14

Working with Restricted and Full Modes

3 Double-click the Wheel and Axle block to open its dialog box. Notice that
theMechanism orientation parameter is grayed out, because you cannot
modify the block driving direction in Restricted mode.

4 Change the Wheel radius parameter value to 0.1.

5-15

5 Using the Simscape™ Editing Mode

5 Simulate the model again. Notice that the motion amplitude of node C
became smaller as a result of the wheel radius change.

6 Double-click the Mass block and change theMass parameter value to 24.

7 Simulate the model. Notice that doubling the mass resulted in increased
vibrations.

5-16

Working with Restricted and Full Modes

Adding and Deleting Simulink Blocks in Restricted Mode
This example shows how you can change the model input signal in Restricted
mode by adding and deleting basic Simulink blocks.

1 Open the test_edit_mode model, which you saved in Restricted mode in
“Example of Saving a Model in Restricted Mode” on page 5-12. The model
opens in Restricted mode.

2 Open the Joint C Position scope and simulate the model.

5-17

5 Using the Simscape™ Editing Mode

3 Delete the Signal Builder block named Force Input. Replace it with a Sine
Wave block from the Simulink Sources library, as shown below.

4 Simulate the model again. The model successfully compiles and simulates
in Restricted mode.

5-18

Working with Restricted and Full Modes

Performing an Operation Disallowed in Restricted Mode
This example shows what happens when you perform an operation that is
disallowed in Restricted mode.

1 Open the test_edit_mode model, which you saved in Restricted mode in
“Example of Saving a Model in Restricted Mode” on page 5-12. The model
opens in Restricted mode.

2 Double-click the MotionSensor2 block to open the subsystem.

5-19

5 Using the Simscape™ Editing Mode

3 Delete the connection line between port P of the Ideal Translational Motion
Sensor block and the PS-Simulink Converter block. Instead, connect port
V of the Ideal Translational Motion Sensor block to the input port of the
PS-Simulink Converter block, to measure the velocity on node C of the
lever.

4 Try to simulate the model. An error message appears saying that the
model cannot be compiled because its topology has been changed while in
Restricted mode. You can either undo the changes, or switch to Full mode,
as described in “Switching from Restricted to Full Mode” on page 5-21.

5-20

Working with Restricted and Full Modes

Switching from Restricted to Full Mode
If you need to perform a task that is disallowed in Restricted mode, you can
try to switch the model to Full mode.

1 From the top menu bar in the model window, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option.

3 Select Full from the drop-down list, as shown, and click OK.

The license manager checks whether all the add-on product licenses for
this model are available. If yes, it checks out the add-on product licenses

5-21

5 Using the Simscape™ Editing Mode

and switches the model to Full mode. If a add-on product license is not
available, the license manager issues an error message and the model stays
in Restricted mode.

Note If the switch to Full mode fails but some of the add-on product licenses
have already been checked out, they stay checked out until you quit the
MATLAB session. For more information, see “Example with Multiple Add-On
Products” on page 5-6.

Once the model is switched to Full mode, you can perform the needed design
and simulation tasks, and then either save it in Full mode, or switch back to
Restricted mode and save it in Restricted mode.

5-22

Editing Mode Information

Editing Mode Information

In this section...

“What Is the Current Mode?” on page 5-23

“Which Licenses Are Checked Out?” on page 5-23

What Is the Current Mode?
If you are unsure whether the model is currently open in Restricted or Full
mode, you can check by following these steps.

1 From the top menu bar in the model window, select Simulation >
Configuration Parameters. The Configuration Parameters dialog box
opens.

2 In the left pane of the Configuration Parameters dialog box, select
Simscape. The right pane displays the Editing Mode option, which is
either Full or Restricted.

3 At this point, you can either try switching the mode by selecting a different
option from the drop-down list, or click Cancel to stay in the current mode.

Which Licenses Are Checked Out?
Use the MATLAB license command to get a list of all the licenses currently
in use. In the MATLAB Command Window, type

license('inuse')

This command returns a list of licenses checked out in the current MATLAB
session. In the list, products are listed alphabetically by their license feature
names.

5-23

5 Using the Simscape™ Editing Mode

5-24

A

Examples

Use this list to find examples in the documentation.

A Examples

Getting Started
“Creating a Simple Model” on page 1-17

Best Practices
“Grounding Rules” on page 1-35
“Example of Using a Parasitic Resistance to Avoid Numerical Simulation
Issues” on page 1-39

Editing Mode
“Example of Saving a Model in Restricted Mode” on page 5-12
“Simulating and Fine-Tuning a Model in Restricted Mode” on page 5-14
“Adding and Deleting Simulink Blocks in Restricted Mode” on page 5-17
“Performing an Operation Disallowed in Restricted Mode” on page 5-19

A-2

Index

IndexE
electrical ground

specifying 1-35

L
linearizing

Simscape™ models 2-28

N
numerical simulation issues

avoiding 1-38

O
operating points

finding in Simscape™ models 2-22
linearizing Simscape™ models at 2-28

P
ports

physical conserving 1-9
physical signal 1-9

S
Simscape Editing Mode 5-2

Full mode 5-4

information 5-23
Restricted mode 5-3
saving in Restricted mode 5-10
switching between modes 5-4
workflows 5-2
working in Restricted mode 5-13
working with block libraries 5-7

Simscape software
block library structure 1-11
editing modes 5-2
logging simulation data 3-2

T
trimming

Simscape™ models 2-22

U
units

defining physical units 4-4

V
variables

across 1-4
direction 1-6
through 1-4
using in model equations 1-5

Index-1

	toc
	Modeling Physical Systems
	Basic Principles of Modeling Physical Networks
	Overview of the Physical Network Approach to Modeling Physical S
	Variable Types
	Building the Mathematical Model
	Direction of Variables
	Connector Ports and Connection Lines
	Physical Conserving Ports
	Physical Signal Ports

	Connecting Simscape Diagrams to Simulink Sources and Scopes

	Introducing the Simscape Block Libraries
	Library Structure Overview
	Using the Simulink Library Browser to Access the Block Libraries
	Using the Command Prompt to Access the Block Libraries

	Essential Steps to Building a Physical Model
	Building Your Model
	Using the Conserving Ports
	Using the Physical Signal Ports

	Creating a Simple Model
	Building a Simscape Diagram
	Modifying Initial Settings
	Running the Simulation
	Adjusting the Parameters
	Changing the Force Profile
	Changing the Model Parameters
	Changing the Mass Position Output Units

	Modeling Best Practices
	Grounding Rules
	Each Domain Requires at Least One Reference Block
	Each Circuit Requires at Least One Reference Block
	Multiple Connections to the Domain Reference Are Allowed Within

	Avoiding Numerical Simulation Issues
	Example of Using a Parasitic Resistance to Avoid Numerical Simul

	Modeling Pneumatic Systems
	Intended Applications
	Assumptions and Limitations
	Fundamental Equations
	Network Variables
	Connection Constraints
	References

	Simulating Physical Models
	How Simscape Simulation Works
	Simscape Simulation Phases
	Model Validation
	Network Construction
	Equation Construction
	Computing Initial Conditions
	Performing Transient Initialization
	Transient Solve

	Working with Solvers
	Selecting a Solver
	Input Filtering

	Troubleshooting Simulation Errors
	Troubleshooting Tips and Techniques
	System Configuration Errors
	Missing Solver Configuration Block
	Extra Fluid Block or Gas Properties Block
	Missing Reference Block
	Basic Errors in Physical System Representation

	Numerical Simulation Issues
	Dependent Dynamic States
	Parameter Discontinuities

	Initial Conditions Solve Failure
	Transient Simulation Issues
	Transient Initialization Not Converging
	Step-Size-Related Errors

	Finding an Operating Point
	What Is an Operating Point?
	Using Operating Points for Linearization
	Example

	How to Find Operating Points
	Time-Based Search
	State-Based Search
	Checking Discrete System States

	Finding Operating Points with Simscape, Simulink, and Related Pr
	Simulating in Time to Search for an Operating Point
	Using the Simscape Steady-State Solver
	Using Simulink Control Design Techniques
	Using Sources to Find Operating Points Not Recommended
	Simulink trim Function Not Supported with Simscape Models

	Linearizing at an Operating Point
	What Is Linearization?
	Choosing a Good Operating Point for Linearization
	What Is Linear Response?
	Example

	How to Linearize a Model
	Full Simulation- or Operation-Based Perturbations
	Analytic Approximations to Known State Dynamics
	Numerical Approximations to Known State Dynamics

	Linearizing a Model with Simscape, Simulink, and Related Product
	Independent Versus Dependent States
	Linearizing with the Simulink linmod and dlinmod Functions
	Linearizing with Simulink Linearization Blocks
	Linearizing with Simulink Control Design Software

	References

	Generating Code
	About Code Generation from Simscape Models
	Related Simulink Code Generation Documentation
	Reasons for Generating Code
	Using Code-Related Products and Features
	How Simscape Code Generation Differs from Simulink
	Simscape and Simulink Code Are Generated Separately
	Compiler Support and Precompiled Libraries
	Simscape Code Reuse Is Not Supported
	Tunable Parameters Are Not Supported
	Simscape Run-Time Parameter Inlining Ignores Global Exceptions

	Limitations
	Sample Time and Solver Restrictions
	Algebraic Loops
	Restricted Simulink Tools
	Unsupported Simulink Tools
	Simulink Tools Not Compatible with Simscape Blocks
	Code Generation
	Code Generation and Fixed-Step Solvers

	Logging Simulation Data
	About Simulation Data Logging
	Suggested Workflows
	Limitations

	How to Log Simulation Data
	How to Enable Data Logging
	Data Logging Options

	Data Logging Example

	Working with Physical Units
	Overview
	Unit Definitions
	Specifying Units in Block Dialogs
	Thermal Unit Conversions
	About Affine Units
	When to Apply Affine Conversion
	How to Apply Affine Conversion

	Angular Units
	References

	Using the Simscape Editing Mode
	About the Simscape Editing Mode
	Suggested Workflows
	What You Can Do in Restricted Mode
	What You Can Do in Full Mode
	Switching Between Modes
	Example with Multiple Add-On Products

	Working with Block Libraries
	Resolving Block Library Links

	Working with Restricted and Full Modes
	Setting the Model Loading Preference
	Saving a Model in Restricted Mode
	Example of Saving a Model in Restricted Mode

	Working with a Model in Restricted Mode
	Simulating and Fine-Tuning a Model in Restricted Mode
	Adding and Deleting Simulink Blocks in Restricted Mode
	Performing an Operation Disallowed in Restricted Mode

	Switching from Restricted to Full Mode

	Editing Mode Information
	What Is the Current Mode?
	Which Licenses Are Checked Out?

	Examples
	Getting Started
	Best Practices
	Editing Mode

	Index

	tables
	Physical Unit Abbreviations Defined by Default in the Simscape U

